光相干断层扫描血管成像在青光眼临床中的应用进展
Advance in the Clinical Application of Optical Coherence Tomography Angiography in Glaucoma
DOI: 10.12677/HJO.2020.93022, PDF, HTML, XML, 下载: 590  浏览: 1,441 
作者: 徐耿欢:汕头大学医学院,广东 汕头;徐桂花:广东省惠州市中心人民医院眼科中心,广东 惠州
关键词: 光相干断层扫描血管成像青光眼血管密度Optical Coherence Tomography Angiography Glaucoma Vessel Density
摘要: 光相干断层扫描血管成像(optical coherence tomography angiography, OCTA)是近年来新兴的血管成像技术,作为一种无创性、高效的检查工具,它能根据不同层次显示视网膜、脉络膜的血管密度并对其进行量化。目前认为眼部循环的改变与青光眼的病情进展密切相关,利用OCTA获得的视网膜血管密度与结构、功能参数有着密切的关系,结合不同检查结果可为青光眼的诊治及评估病情严重程度提供可靠参考。
Abstract: Optical coherence tomography angiography (OCTA) is a new technique of vascular imaging. As a non-invasive and efficient diagnostic tool, OCTA can display and quantify the vascular density of retina and choroid according to different levels. At present, it is believed that the changes of ocular circulation are closely related to the progression of glaucoma, and the retinal vascular density obtained by OCTA is closely related to the structure and function parameters. Combining different examination results can provide reliable reference for diagnosis and treatment of glaucoma and assessment of severity of the disease.
文章引用:徐耿欢, 徐桂花. 光相干断层扫描血管成像在青光眼临床中的应用进展[J]. 眼科学, 2020, 9(3): 172-178. https://doi.org/10.12677/HJO.2020.93022

1. 引言

青光眼是一组以视网膜神经节细胞(retinal ganglion cells, RGCs)变性为特征的视神经退行性病变,其主要表现为特征性的视盘改变和视野缺损 [1]。目前青光眼确切的发病机制仍尚不清楚,对此主要有机械压力学说和血管缺血学说,而眼部循环作为一项重要的监测指标,与青光眼的病情进展是密切相关的 [2] [3] [4]。

光相干断层扫描血管成像(optical coherence tomography angiography, OCTA)是近年来应用广泛的一种非侵入性的血管成像技术,它能够逐层显示视网膜、脉络膜的血流灌注情况,并对其进行定量分析 [5]。随着OCTA的应用,我们能够更直观地观察青光眼患者眼部血流变化的情况,并进一步深化对青光眼发病机制的理解,对病情监测和早期治疗提供证据支持。本文将对OCTA在青光眼临床中的应用进展进行综述。

2. OCTA工作原理

光学相干断层扫描(optical coherence tomography, OCT)自1991年问世以来,从最初的时域OCT (time domain OCT, TD-OCT)到现在分辨率更高的扫频光源OCT (sweep source OCT, SS-OCT),这一技术已经被广泛应用于眼科疾病的结构评估。而基于OCT发展而来的OCTA,是通过对同一横截面进行连续多次的B扫描,将运动物体(如血细胞)引起的OCT信号改变作为对比机制,再利用包括分频振幅去相干血管成像(Split-spectrum amplitude decorrelation angiography, SSADA)在内的多种算法,对图像进行降噪优化,最终得到不同层次的血管成像 [6] [7]。

3. OCTA检测黄斑区、视盘及视盘周围眼部血管密度

Akil等 [8] 对24例正常人24眼和24例轻中度原发性开角型青光眼(primary open angle glaucoma, POAG)患者的24眼进行黄斑区6 × 6 mm区域的OCTA扫描,通过测量浅层视网膜(superficial retinal layers, SRL)和深层视网膜(deep retinal layers, DRL)的血管密度(vessel density, VD)来进行定量分析。研究发现POAG患者的浅层和深层视网膜平均VD与健康对照组相比均显著降低(SRL, P < 0.001; DRL, P < 0.001),同时,通过pearson相关系数分析发现黄斑区浅层VD与神经节细胞-内丛状层厚度(GC-IPL thickness)显著相关(r = 0.42, P = 0.04)。该研究提示OCTA对黄斑血流的评价为青光眼的诊断提供了依据,并可以评估特定微血管病变的严重程度,以监测疾病的进展。

Lommatzsch等 [9] 使用OCTA对健康对照组的50眼与青光眼患者的85眼的黄斑区进行了面积为6 × 6 mm的扫描,并计算了受试者工作特征曲线(receiver operating characteristic, ROC)和曲线下面积(area under the curve, AUC)。研究结果表明青光眼患者的黄斑区VD显著低于健康对照组(P = SRL < 0.0001; DRL = 0.009),同时黄斑区下方VD下降的幅度最大。对比黄斑中心凹、旁中心凹及黄斑区全周(整个扫描区域)VD(macular whole vessel density, m-wVD)的诊断效能发现,浅层视网膜的wVD具有最佳的诊断效能(77.6%)。研究表明OCTA通过测量黄斑区DRL和SRL的VD可用于检测青光眼损害。它可以是独立于视神经检测青光眼的其他诊断工具。

Chen等 [10] 对POAG患者的26眼和健康对照者的27眼的黄斑区和视盘进行OCTA扫描,利用二次回归模型来确定标准自动视野检查(standard automated perimetry, SAP)参数与结果指标之间的相关性,发现视盘周围(视盘周围宽0.75mm的环形区域,circumpapillary) VD (cpVD)较正常人显著降低(P < 0.001),并且m-wVD的诊断效能(0.94)与视盘wVD (0.93)是相近的,SAP严重程度与视盘wVD相关性最强(R² = 0.58, P < 0.001)。

Rao等 [11] 对53例健康对照者的78只眼睛和39例POAG患者的64只眼睛的视盘4.5 mm × 4.5 mm区域和黄斑区3 mm × 3 mm区域进行了OCTA扫描,并通过计算AUC评价各部位诊断效能,则发现cpVD的诊断效能明显优于视盘VD (P = 0.05)和黄斑VD (P = 0.005),并且青光眼VD的诊断能力随青光眼严重程度的增加而增加。

4. OCTA检测血管密度与其他青光眼检查参数的关系

4.1. OCTA检测血管密度与结构参数的关系

以往基于OCT的研究,已经证明在青光眼早期就已经存在RGCs和视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度的丢失 [12] [13]。而随着OCTA的应用,可以进一步探究视网膜血管密度与视网膜结构之间的关系。

Hou等 [14] 对正常人的57眼,视野损害前期青光眼患者的68眼和早期POAG患者的162眼进行了OCTA和SD-OCT检测。研究发现与视野损害前期POAG组相比,早期POAG组的神经节细胞复合体(ganglion cell complex, GCC)厚度丢失的百分比更大(分别为4.72%和9.86%;所有P < 0.01),但血管密度百分比损失相近(分别为4.97%和6.93%;所有P > 0.05)。在视野损害前期POAG中,GCC厚度和血管密度百分比损失程度相近(均为P > 0.1)。而在早期POAG中,GCC厚度丢失的百分比大于血管密度(所有P ≤ 0.001)。线性和二次回归模型均显示,视野损害前期青光眼和早期青光眼中GCC厚度损失百分比与血管密度之间存在相关性(所有P ≤ 0.01),但相关性较弱,介于12%至32%之间。研究表明,在区分视野损害前期或早期青光眼与健康眼上,GCC厚度和黄斑血管密度具有相似的诊断准确性(均P > 0.05)。

Moghimi等 [15] 对83例青光眼患者的132眼进行了至少两年的随访(平均27.3 ± 3.36月),使用OCTA测量并评估VD与RNFL丢失率之间的关系。通过单变量效应模型分析发现更低的基础m-wVD和视盘wVD(onh-wVD)与更快的RNFL丢失速度是相关的,即m-wVD和onh-wVD每少1%,RNFL丢失速度分别快0.11 μm/年(P < 0.001)和0.06 μm/年(P = 0.031)。使用多变量模型分析亦能得到相似的结果。而血管密度测量值与RNFL丢失率之间的关系则比较弱(m-wVD的r² = 0.125, onh-wVD的r² = 0.033)。研究表明ONH和黄斑VD的检测为评估青光眼进展的风险和预测疾病变化率提供了重要的信息。

Kim [16] 等将86例早期正常眼压性青光眼患者(normal-tension glaucoma, NTG)的86眼(SAP MD > −5.5 dB)和25例可疑青光眼患者(glaucoma-suspect, GS)的25眼纳入研究,分析黄斑区浅层微血管密度(superficial microvessel density, SMD)与GCIPL之间的地形关系,则发现在GS和早期NTG患者中,黄斑GCIPL厚度与颞上区(ST)、颞下区(IT)和下方(II)的黄斑SMD呈显著相关(r = 0.191,IT和II区分别为0.373和0.346)。在黄斑的颞上区与视盘周围区域的1,9点钟方位、黄斑的颞下区和下方与视盘周围区域的6, 7, 8点钟方位,视盘周围RNFL厚度和黄斑SMD有显著相关性。研究表明GS和早期NTG患者的黄斑不同分区的SMD与黄斑区GCIPL厚度和视盘周围RNFL厚度具有地形相关性。

4.2. OCTA检测血管密度与视野检查参数的关系

特征性的视野缺损是青光眼最主要的临床表现,而进一步探究视网膜血管密度与视野检查参数之间的关系,或许能为青光眼疾病进展的评估提供不同的思路。

Yarmohammadi [17] 等对31名健康对照者、48名GS患者和74名青光眼患者进行了OCTA, SD-OCT及SAP检查,研究发现相较于平均视野缺损(mean deviation, MD)与RNFL (R² = 0.36)和盘沿面积(R² = 0.19),MD与cpVD和wVD(以视盘为中心的4.5 × 4.5 mm区域)有更强的相关性(分别为R² = 0.54和R² = 0.51,均P < 0.05),但两者是相近的(P = 0.500)。模式标准差(pattern standard deviation, PSD)与wVD的相关性最强(R² = 0.39)。多重线性回归分析显示wVD每减少1%,MD丢失0.66 dB,而cpVD每减少1%,MD丢失0.64 dB (均P < 0.001)。此外,在控制了结构损害的影响之后,血管密度与视野损害之间的相关性仍然显著(P < 0.001)。

Jeon [18] 等研究纳入46例视野检查可测出旁中心暗点的NTG患者,分层次测量了黄斑区视网膜的厚度及血管密度。根据SAP测得的MD将受试者分为两组(24例MD ≥ −6 dB和22例MD < −6 dB),发现MD较好的一组,其平均cpRNFL (p = 0.002)、GCIPL厚度(p = 0.012)均优于较差MD组,两组间的黄斑VD均值不同,但只有深层血管具有统计学意义(浅层VD分别为28.85%和27.73%,P = 0.212;深层VD分别为32.11%和31.03%,P = 0.037)。通过单因素和多因素回归分析,并剔出了不具有统计学意义的因素后,发现深层VD是影响MD(P = 0.044)和中央灵敏度(central sensitivity,视野检查中央10°内灵敏度平均值) (P = 0.031)的重要因素。

4.3. OCTA检测血管密度与眼压的关系

高眼压被认为是青光眼发病的主要危险因素 [19],降低眼压也是临床上主要的治疗措施。有研究表明高眼压会引起眼部血流动力学的改变 [20] [21],但以往的检查方法却难以对视血管进行可视化与量化。OCTA的应用则可以更直观地显示视网膜血管的变化。

Park [22] 等对30例正常对照者和104例开角型青光眼(open angle glaucoma, OAG)纳入研究。在104例OAG患者中选取37对NTG和高眼压青光眼患者(high-tension glaucoma, HTG),研究对象平均年龄:对照组34.43 ± 7.44,NTG 37.35 ± 7.69,HTG 38.03 ± 8.20。HTG组与正常对照组相比,cpVD显著降低(p = 0.013,平均减少6.35%),而NTG组与对照组比较差异无统计学意义(p > 0.05),HTG组鼻下区VD明显低于NTG组(HTG, 18.85 ± 4.19%; NTG, 21.56 ± 4.23%, p = 0.019),且未经治疗的眼压(IOP)与cpVD呈负相关。说明不同水平的初始未治疗IOP可能对年轻OAG患者的乳头周围血管密度有不同的影响。

Moghimi [23] 等将28例单侧急性原发性房角关闭(acute primary angle closure, APAC)发作的患者和39例正常对照者纳入研究,在APAC发作缓解后继续随访6周(APAC发作后6周内双眼眼压21 mmHg或以下)。APAC患者IOP为44.3 ± 4.7 mmHg(范围:38~65 mmHg)。在6周的随访中APAC眼的cpVD (57.3% ± 6.8%)明显低于未发作眼(63.1% ± 3.5%)和对照组(63.6% ± 3.4%) (P < 0.001)。同时APAC眼的全周RNFL较未发作眼与对照组变薄(p < 0.001),提示APAC发作后微循环的改变可能与RGCs的继发性变性有关。

5. OCTA在手术后血流评估中的应用

小梁切除术是治疗青光眼常用的一种滤过性手术方式,即通过建立房水眼外引流途径来达到控制眼压的目的,而OCTA可以对手术前后的眼部血流变化进行定量分析,并为进一步探究手术对眼部血流的影响提供了依据。

Kim等 [24] 对施行了小梁切除术的POAG患者的56眼纳入研究。于术前和术后3个月使用OCTA评估视盘和视盘周围微循环并以筛板曲线指数(lamina cribrosa curve index, LCCI)量化LC曲率变化。患者术后3个月LCCI显著下降(从13.23 ± 2.65到10.80 ± 2.20,P < 0.001),IOP显著下降(P < 0.001),LC的VD显著增加(从10.21% ± 4.72%到11.88% ± 6.04%,P = 0.006),其中LCCI的降低与LC中VD的增加之间存在显著相关性(P < 0.001),并且LC中VD升高的幅度与LCCI降低的幅度呈正相关。这表明IOP降低可能引起的LCCI降低,减少了LC内毛细血管的压迫,从而潜在地增加了视盘轴突的血流量。

Shin [25] 等对31例POAG患者的31眼测量了IOP、筛板深度(筛板前表面与参考平面之间的垂直距离,LCD)及OCTA测得的视盘4.5 × 4.5 mm区域成像。研究表明小梁切除术后3个月IOP与LCD均较基线显著降低(所有P < 0.001),并且有19眼(61.3%)微循环得到改善(微循环改善定义为微血管丢失面积减少大于30%)。与微循环未改善眼对比,微循环改善眼的IOP和LCD的最大减少程度更显著(P = 0.020和P = 0.005)。微循环的改善与LCD最大减少程度显著相关(odds ratio, 1.062; P = 0.026)。这说明小梁切除术可改善POAG患者视盘周围视网膜微循环,而降低眼压引起的LCD的减少可能影响POAG患者的视盘周围微血管的改善。

6. 总结及展望

以上研究表明,眼部血流状态的改变与青光眼的发生发展是密切相关的,并且与视野检查、眼压测量等参数存在着显著的相关性。传统的血管成像技术无法对眼部循环进行准确、可重复并且定量的分析,而OCTA作为一项无创、自动化的血管成像技术,则很好地弥补了上述的不足 [26] [27],为青光眼的诊治提供了重要的工具。

不过,在临床实际应用中,OCTA也存在着一定的局限性:OCTA成像质量受眼球运动、信号强度等多种因素的影响,产生的图像伪影可能导致对结果判断的误导 [28] [29] [30]。不同的扫描范围对于检查结果也有一定的影响,比如更大的扫描面积可能并不能获得更多的诊断信息 [31]。目前除了前文提到的使用SSADA算法的Angiovue OCTA,亦有使用全频振幅去相干血管成像(Full-spectrum amplitude decorrelation angiography)算法的Spectralis OCTA以及利用OCT信号强度变化和相位差来描述血管的Cirrus OCTA等设备被运用于临床 [32]。相信随着研究的深入及OCTA设备、算法的更新,OCTA会为青光眼的诊断和评估提供更加可靠的依据,并能够为我们进一步了解探讨青光眼的发病机制提供帮助。

参考文献

[1] Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma: A Review. JAMA, 311, 1901-1911.
https://doi.org/10.1001/jama.2014.3192
[2] Flammer, J., Orgül, S., Costa, V.P., et al. (2002) The Impact of Ocular Blood Flow in Glaucoma. Progress in Retinal and Eye Research, 21, 359-393.
https://doi.org/10.1016/S1350-9462(02)00008-3
[3] Cherecheanu, A.P., Garhofer, G., Schmidl, D., Werkmeister, R. and Schmetterer, L. (2013) Ocular Perfusion Pressure and Ocular Blood Flow in Glaucoma. Current Opinion in Pharmacology, 13, 36-42.
https://doi.org/10.1016/j.coph.2012.09.003
[4] Garhöfer, G., Fuchsjäger-Mayrl, G., Vass, C., Pemp, B., Hommer, A. and Schmetterer, L. (2010) Retrobulbar Blood Flow Velocities in Open Angle Glaucoma and Their Association with Mean Arterial Blood Pressure. Investigative Ophthalmology & Visual Science, 51, 6652-6657.
https://doi.org/10.1167/iovs.10-5490
[5] Campbell, J.P., Zhang, M., Hwang, T.S., et al. (2017) Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Scientific Reports, 7, Article No. 42201.
https://doi.org/10.1038/srep42201
[6] Sambhav, K., Grover, S. and Chalam, K.V. (2017) The Application of Optical Coherence Tomography Angiography in Retinal Diseases. Survey of Ophthalmology, 62, 838-866.
https://doi.org/10.1016/j.survophthal.2017.05.006
[7] Kashani, A.H., Chen, C.L., Gahm, J.K., et al. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002
[8] Akil, H., Chopra, V., Al-Sheikh, M., et al. (2017) Swept-Source OCT Angiography Imaging of the Macular Capillary Network in Glaucoma. British Journal of Ophthalmology, 102, 515-519.
[9] Lommatzsch, C., Rothaus, K., Koch, J.M., Heinz, C. and Grisanti, S. (2018) OCTA Vessel Density Changes in the Macular Zone in Glaucomatous Eyes. Graefe’s Archive for Clinical and Experimental Ophthalmology, 256, 1499-1508.
https://doi.org/10.1007/s00417-018-3965-1
[10] Chen, H.S., Liu, C.H., Wu, W.C., Tseng, H.J. and Lee, Y.S. (2017) Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Investigative Ophthalmology & Visual Science, 58, 3637-3645.
https://doi.org/10.1167/iovs.17-21846
[11] Rao, H.L., Pradhan, Z.S., Weinreb, R.N., et al. (2016) Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 171, 75-83.
https://doi.org/10.1016/j.ajo.2016.08.030
[12] Kim, Y.J., Kang, M.H., Cho, H.Y., Lim, H.W. and Seong, M. (2014) Comparative Study of Macular Ganglion Cell Complex Thickness Measured by Spectral-Domain Optical Coherence Tomography in Healthy Eyes, Eyes with Preperimetric Glaucoma, and Eyes with Early Glaucoma. Japanese Journal of Ophthalmology, 58, 244-251.
https://doi.org/10.1007/s10384-014-0315-7
[13] Pazos, M., Dyrda, A.A., Biarnés, M., et al. (2017) Diagnostic Accuracy of Spectralis SD OCT Automated Macular Layers Segmentation to Discriminate Normal from Early Glaucomatous Eyes. Ophthalmology, 124, 1218-1228.
https://doi.org/10.1016/j.ophtha.2017.03.044
[14] Hou, H., Moghimi, S., Zangwill, L.M., et al. (2019) Macula Vessel Density and Thickness in Early Primary Open- Angle Glaucoma. American Journal of Ophthalmology, 199, 120-132.
https://doi.org/10.1016/j.ajo.2018.11.012
[15] Moghimi, S., Zangwill, L.M., Penteado, R.C., et al. (2018) Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 125, 1720-1728.
https://doi.org/10.1016/j.ophtha.2018.05.006
[16] Kim, J.S., Kim, Y.K., Baek, S.U., et al. (2020) Topographic Correlation between Macular Superficial Microvessel Density and Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma-Suspect and Early Normal-Tension Glaucoma. British Journal of Ophthalmology, 104, 104-109.
https://doi.org/10.1136/bjophthalmol-2018-313732
[17] Yarmohammadi, A., Zangwill, L.M., Diniz-Filho, A., et al. (2016) Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology, 123, 2498-2508.
https://doi.org/10.1016/j.ophtha.2016.08.041
[18] Jeon, S.J., Park, H.L. and Park, C.K. (2018) Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients. Scientific Reports, 8, Article No. 16009.
https://doi.org/10.1038/s41598-018-34417-4
[19] Sommer, A., Tielsch, J.M., Katz, J., et al. (1991) Relationship between Intraocular Pressure and Primary Open Angle Glaucoma among White and Black Americans. The Baltimore Eye Survey. Archives of Ophthalmology, 109, 1090- 1095.
https://doi.org/10.1001/archopht.1991.01080080050026
[20] Kiyota, N., Shiga, Y., Ichinohasama, K., et al. (2018) The Impact of Intraocular Pressure Elevation on Optic Nerve Head and Choroidal Blood Flow. Investigative Ophthalmology & Visual Science, 59, 3488-3496.
https://doi.org/10.1167/iovs.18-23872
[21] Iwase, T., Akahori, T., Yamamoto, K., Ra, E. and Terasaki, H. (2018) Evaluation of Optic Nerve Head Blood Flow in Response to Increase of Intraocular Pressure. Scientific Reports, 8, Article No. 17235.
https://doi.org/10.1038/s41598-018-35683-y
[22] Park, J.H., Yoo, C. and Kim, Y.Y. (2019) Peripapillary Vessel Density in Young Patients with Open-Angle Glaucoma: Comparison between High-Tension and Normal-Tension Glaucoma. Scientific Reports, 9, Article No. 19160.
https://doi.org/10.1038/s41598-019-55707-5
[23] Moghimi, S., SafiZadeh, M., Fard, M.A., et al. (2019) Changes in Optic Nerve Head Vessel Density after Acute Primary Angle Closure Episode. Investigative Ophthalmology & Visual Science, 60, 552-558.
https://doi.org/10.1167/iovs.18-25915
[24] Kim, J.A., Kim, T.W., Lee, E.J., Girard, M.J.A. and Mari, J.M. (2018) Microvascular Changes in Peripapillary and Optic Nerve Head Tissues after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 59, 4614-4621.
https://doi.org/10.1167/iovs.18-25038
[25] Shin, J.W., Sung, K.R., Uhm, K.B., et al. (2017) Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction after Trabeculectomy in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 58, 5993-5999.
https://doi.org/10.1167/iovs.17-22787
[26] Chen, C.L., Bojikian, K.D., Xin, C., et al. (2016) Repeatability and Reproducibility of Optic Nerve Head Perfusion Measurements Using Optical Coherence Tomography Angiography. Journal of Biomedical Optics, 21, 65002.
https://doi.org/10.1117/1.JBO.21.6.065002
[27] Shoji, T., Zangwill, L.M., Akagi, T., et al. (2017) Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. American Journal of Ophthalmology, 182, 107-117.
https://doi.org/10.1016/j.ajo.2017.07.011
[28] Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R. and Staurenghi, G. (2018) Optical Coherence Tomography Angiography. Progress in Retinal and Eye Research, 64, 1-55.
https://doi.org/10.1016/j.preteyeres.2017.11.003
[29] Enders, C., Lang, G.E., Dreyhaupt, J., Loidl, M., Lang, G.K. and Werner, J.U. (2019) Quantity and Quality of Image Artifacts in Optical Coherence Tomography Angiography. PLoS ONE, 14, e0210505.
https://doi.org/10.1371/journal.pone.0210505
[30] Spaide, R.F., Fujimoto, J.G. and Waheed, N.K. (2015) Image Artifacts in Optical Coherence Tomography Angiography. Retina, 35, 2163-2180.
https://doi.org/10.1097/IAE.0000000000000765
[31] Chang, R., Chu, Z., Burkemper, B., et al. (2019) Effect of Scan Size on Glaucoma Diagnostic Performance Using OCT Angiography En Face Images of the Radial Peripapillary Capillaries. Journal of Glaucoma, 28, 465-472.
https://doi.org/10.1097/IJG.0000000000001216
[32] Rao, H.L., Pradhan, Z.S., Suh, M.H., Moghimi, S., Mansouri, K. and Weinreb, R.N. (2020) Optical Coherence Tomography Angiography in Glaucoma. Journal of Glaucoma, 29, 312-321.
https://doi.org/10.1097/IJG.0000000000001463