马兜铃酸类物质与肝癌关系的研究进展
The Relationship between Aristolochic Acids and Hepatocellular Carcinoma
DOI: 10.12677/ACM.2020.109293, PDF, HTML, XML, 下载: 425  浏览: 707  国家科技经费支持
作者: 苏 强*, 马建波, 孙 娜, 赵天宇:西北民族大学,生物医学研究中心生物工程与技术国家民委重点实验室,甘肃 兰州;陈 侃:浙江理工大学生命科学与医药学院,浙江 杭州;张 勇#:中国人民解放军联勤保障部队第九四〇医院,第一派驻门诊部,甘肃 兰州
关键词: 马兜铃酸肝细胞性肝癌毒理作用Aristolochic Acid Hepatocellular Carcinoma Toxicological Effect
摘要: 马兜铃酸类物质(aristolochic acids, AAs)是一类普遍存在于马兜铃属和细辛属植物中的硝基菲类有机酸化合物,因具有抗感染、抗癌、增强免疫、调节血压及终止妊娠等作用而广泛应用于中医治疗。但也有研究表明,长期服用含AAs的药物可导致多种系统疾病,如输尿管移行上皮细胞癌、结肠腺癌、乳腺癌浸润性导管癌等,关于AAs诱发各类疾病的机制研究已广泛展开。目前报道AAs暴露对肝脏毒性作用的实验研究尚较少,本文总结了AAs的化学结构和毒理作用机制,并阐述了其诱发肝细胞性肝癌(Hepatocellular carcinoma, HCC)的可能机制,期望为临床合理应用含AAs的药物提供参考。
Abstract: Aristolochic acid compound (aristolochic acids, AAs) is a kind of nitrophenanthrene organic acid compound commonly found in Aristolochia and Asarum plants. It is widely used in traditional Chinese medicine treatment for anti-infection, anti-cancer, enhanced immunity, regulation of blood pressure and termination of pregnancy. However, some studies showed that long-term use of the drugs containing AAs leads to a variety of diseases, such as transitional cell carcinoma of ureter, colonnade carcinoma, as well as invasive ductal carcinoma of breast. The mechanism of diseases induced by AAs has been widely explored. At present, the experimental study about the toxic effect of AAs on liver is few. This review summarized the chemical structure and toxicological mechanism of AAs, and also analyzed the possible mechanism of (Hepatocellular carcinoma, HCC) induced by AAs, in order to provide reference for the rational use of drugs containing AAs.
文章引用:苏强, 马建波, 孙娜, 赵天宇, 陈侃, 张勇. 马兜铃酸类物质与肝癌关系的研究进展[J]. 临床医学进展, 2020, 10(9): 1951-1959. https://doi.org/10.12677/ACM.2020.109293

1. 引言

马兜铃酸(Aristolochic acids, AAs)是一种普遍存在于马兜铃属和细辛属植物中的硝基菲类有机酸化合物,也是一种被广泛用于治疗湿疹、肺炎、中风、炎症性疾病、蛇咬伤、关节炎,痛风和冠心病等疾病的传统药物 [1] [2]。迄今已有178种AAs类似物被分离鉴定,包括至少7种马兜铃属植物和4种细辛属植物。近年来,含AAs成分的中药引起肾脏损害的报道日益增多 [3] [4],2001年美国食品药品监督管理局(FDA)称使用含AAs的药品可导致永久性肾损伤甚至肾衰竭 [5],2002年国际癌症研究中心(IARC)将含AAs的中草药列为一类致癌物,自此很多国家都采取相应政策以加强对此类药物的管理,这使得AAs的临床应用陷入困境。

原发性肝癌是由多种因素引起的异质性疾病,在全球癌症相关死亡原因中排第四,肝癌患者的5年生存率在10%~28%之间 [6]。我国每年约有46万新发肝癌患者,占全球新发病例的55% [7]。肝细胞性肝癌(Hepatocellular carcinoma, HCC)是原发性肝癌的主要类型,HCC的诱发因素包括感染肝炎病毒(例如HBV, HCV)、黄曲霉素暴露、肝硬化、酒精性肝病和基因变异等。2017年,新加坡和中国台湾的研究人员通过基因测序发现亚洲肝癌患者的基因谱中存在AAs及其衍生物的特征性突变位点,并指出含有AAs的中草药可能通过诱导特异性突变——A:T > T:A而诱发肝癌,自此AAs引起了众多肝癌研究者的关注 [8]。

本综述从AAs的化学结构和毒理作用机制出发,着重阐述AAs与肝癌进展的关系,并分析其可能的作用机理,旨在为建立肝癌模型,以及肝癌的发病机制等基础研究提供参考。

2. 马兜铃酸的分子结构和毒理作用

马兜铃酸I (8-methoxy-6-nitro-phenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid, AAI)和马兜铃酸II (6-nitrophenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid, AAII)是AAs中含量最丰富,最具活性的成分 [9] [10],两者的结构差异在于AAI的8位有邻甲氧基,而AAII没有(图1) [11]。虽然AAI和AAII有治疗胃痛、缓解高血压、提高白细胞、缓解风湿,镇痛以及利尿等重要作用,但是其生物毒性却不容忽视,如:诱导基因突变、致癌及肝肾毒性等 [12] [13]。研究表明,菲环上的硝基(−NO2)是AA是主要的毒性基团,其中,AAI中甲氧基(CH3O−)对其毒性起着重要的重用 [14]。因此,对AAI和AAII在分子层面上进行细致的研究,对推动中医药事业的传承与现代化发展起着重要的作用。AAs作为具有遗传毒性的致癌物,经过代谢后会与DNA碱基中的腺嘌呤(A)和鸟嘌呤(G)结合,形成马兜铃内酰胺(Aristolactam, AL)-DNA加合物(dA-AL和dG-AL),后者是AAs暴露的特异性标志物,特别是AAI与腺嘌呤形成的加合物dA-AL-I能够在体内长期存在 [15]。

(a) AAI (b) AAII

Figure 1. The molecular structure of aristolochic acid

图1. 马兜铃酸分子结构式

流行病学研究表明,AAs暴露与肾毒性和上尿路癌(Upper tract urothelial carcinoma, UTUC)的高风险相关,此类疾病被命名为马兜铃酸肾病(Aristolochic acid nephropathy, AAN) [16]。一些曾服用中草药减肥的女性患有间质纤维化/萎缩、肾小管丢失,尿路上皮增生等特征的间质性肾炎,其中超过40%的患者发展为UTUC,并且在这些患者的肾脏和输尿管组织中,可以检测到AAs-DNA加合物 [17]。另一方面,高剂量、长期AAI治疗可增加生殖细胞的毒性风险,有报道称AAI可通过抑制蛋白激酶B (Protein kinase B, Akt)而诱导卵子凋亡,并在卵巢发育过程中产生较强的毒性作用 [18]。也有实验证明AAI可能通过过度氧化应激而诱导DNA损伤,进而破坏细胞成熟,最终影响卵母细胞的减数分裂和受精能力 [19],但其具体机制尚不确定。

实验证实当给予AAs后,小鼠、大鼠和犬等动物的前胃、耳道、小肠、肾脏、尿路上皮道、肝脏、膀胱以及皮下等区域的患癌风险均不同程度增高 [20] [21] [22],AAs重复给药还可增加小鼠和大鼠的肾毒性风险 [23]。

3. 马兜铃酸具有诱发肝癌潜能的实验室证据

近年来,马兜铃酸与肝癌的关系引发巨大争议,我国肝癌发病率很高,同时也是盛行中医药治疗的国家 [24] [25],肝癌的高发病率是否与患者持续服用含有AAs的中药有关?目前尚无定论。

以不同浓度的AAI处理小鼠巨噬细胞Raw264.7,可诱导Raw264.7向M2型极化,且随着AAI诱导剂量的增加,M2型巨噬细胞中精氨酸酶(arginase 1, Arg-1),几丁质酶-3样蛋白3(Chitinase-3-like protein 3, Ym1)表达显著上调(P < 0.05),后者促进小鼠肝癌细胞Hepa1-6的迁移及侵袭能力。与此同时,Hepa1-6细胞中黏蛋白(E-cadherin)表达下调,而波形蛋白(Vimentin)、N-钙粘蛋白(N-cadherin)以及转录因子(Snail)的表达均上调,证实AAI可诱导小鼠Hepa1-6肝癌细胞进行上皮间充质的转化 [26]。

2019年7月,韩泽广团队在Hepatology发表文章 [27],证实用AAI或AAI联合CCl4刺激2周龄PTEN-/-小鼠,可剂量依赖的诱发小鼠HCC或肝细胞癌合并肝内胆管细胞癌(Combined hepatocellular and intrahepatic cholangiocarcinoma, cHCC-ICC)的发生,且AAI与CCL4联合应用可加速该过程。表明在肝损伤状态下更易于AAI诱发HCC的形成。此外,研究的基因组和外显子组分析指出,人和小鼠的HCC组织中不仅含有AAI-DNA加合物,AAs暴露在人类HCC可特异性诱导p53蛋白和蛋白酪氨酸激酶(Janus kinase 1, JAK1)中的部分位点发生突变。

为进一步评估AAs暴露对HCC发生或进展的影响,按照严格的AAs突变指纹贡献度标准对1957例来自不同国家和地区的HCC患者基因组数据进行了深入分析(如表1所示)。来自中国大陆、中国香港和中国台湾的共计510份HCC样本中,133份(26%)含有AAs的特征性突变标签,其中来自中国台湾的98份样本中,有68份(69%)含AA的特征性突变标签;其次为新加坡(44%)和韩国(7%);来自日本和法国的HCC患者,AAs的特征性突变标签低于1%。此项调查还发现肾癌、膀胱癌、食道癌也都表现出AAs突变特征。但在所有的癌症类型中,HCC患者更容易受马兜铃酸的影响,特别是中国HCC患者受AAs的影响最大。

Table 1. Aristolochic acid exposure in human liver cancers

表1. 马兜铃酸暴露与人肝细胞性肝癌的相关性调查研究

*表示AA签名暴露大于0的可信区间估计的下限为95% (P < 0.05)。

**表示AA签名暴露不低于20%的可信区间的估计下限为95% (P < 0.05)。

#包括中国(大陆)、新加坡和日本。

4. 马兜铃酸诱发肝癌的可能机制

4.1. AAs与氧化应激之间的关系

越来越多的证据表明:氧化应激、细胞凋亡、炎症和纤维化是重要的致癌因素 [38],其中氧化应激在AAs诱导的细胞毒性中起重要作用。既往研究报道指出AAs可诱导活性氧(Reactive oxygen species, ROS)的生成从而导致氧化损伤,而AAI诱导的细胞凋亡往往伴随细胞内ROS生成增加,这提示ROS可能在AAI诱导的反应中起重要作用 [39]。褪黑激素(Melatonin, MEL)对AAs诱导的氧化应激具有抑制作用,同时能逆转小鼠体内因AAs暴露而升高的促氧化剂细胞色素P450 2E1 (Cytochrome P4502E1, CYP2E1),超氧化物歧化酶2 (Superoxide dismutase 2, SOD2)、过氧化氢酶(catalase)和谷胱甘肽合成酶(Glutathione synthetase, GSS) [40]。提示AAs可能通过氧化应激途径发挥毒性作用,而MEL可能是一种潜在的能逆转AAs的毒性作用,进而缓解疾病症状的药物。

4.2. AAs与代谢酶类之间的关系

在体内,AAI经硝基的还原活化形成N-羟基马兜铃内酰胺I (N-OH-ALI)后进一步形成不稳定的环状酰基氮离子与DNA结合生成AAI-DNA加合物,发挥致癌作用 [41]。近年来,对AAI还原活化形成AAI-DNA加合物的代谢过程受到广泛研究,因此对AAI还原代谢过程中涉及的酶的研究对于评估个体对这种致癌物的易感性十分重要。Stiborová等 [42] 提出人胞质NAD(P)H:醌氧化还原酶1(NAD(P) H: quinone oxidoreductase 1, NQO1)、黄嘌呤氧化酶(Xanthine oxidase, XO)、NADPH:细胞色素P450、 [43] (NADPH: cytochrome P450 reductase, CPR),前列腺素H合成酶 [44] (Prostaglandin H synthetase, PHS)以及细胞色素P450 1A1/2 (cytochrome P450 1A1/2, CYP1A1/2)均能参与AAI的还原代谢。对AAI在人肝微粒体中的研究认为,人肝微粒体中AAI的活化主要由CYP1A2介导,CYP1A1次之,CPR作用较小 [45]。

4.3. AAs与PI3K/Akt信号通路之间的关系

磷脂酰肌醇3-激酶/丝氨酸/苏氨酸蛋白激酶B (Phosphatidylinositol 3-kinase/protein kinase B, PI3K/PKB (别名Akt))信号通路是一条对细胞存活有着重要生物学作用的通路。该通路起始于受体酪氨酸激酶(Receptor tyrosine kinase, RTK)和细胞因子受体(Cytokine receptor, CKP)的活化,活化后的PI3K/Akt信号通路可使络氨酸残基磷酸化从而提供募集PI3K向膜上转位的锚定位点,以此参与多种细胞外基质、细胞因子等信号转导从而完成提高细胞生存能力和抑制细胞衰老死亡等生物学作用。

AAI和关木通(Aristolochia manshuriensis kom, AMK)可显著降低肾小管血管内皮生长因子(Vascular endothelial growth factor, VEGF)的表达 [46]。正常情况下,VEGF激活PI3K/Akt信号通路,后者磷酸化B细胞白血病–淋巴瘤-2相关蛋白(Bcl-2-associated X protein gene, Bax),从而抑制凋亡的发生 [47],而AAs则可通过抑制PI3K/Akt的活化信号诱导细胞凋亡。另一项用AAs处理人脐静脉内皮细胞(Human umbilical vein endothelial cells, HUVECs)的研究观察到,AAs暴露对HUVECs的存活率呈剂量和暴露时间依赖性 [48]。此外Akt (Ser473)发生磷酸化,使Bcl-2家族中最主要的抑制凋亡和促进凋亡蛋白Bcl-2和Bax的表达分别降低和升高,而Bcl-2/Bax的比例与肿瘤的发生发展密切相关。从Bcl-2/Bax比例下降的实验结果说明AAs可能是通过影响PI3K/Akt信号通路,继而调节Bcl-2/Bax的比例诱导HUVECs凋亡的。

此外,有研究指出AAN与PI3K/Akt/NFкB通路有关 [49],经AAI暴露14天可显著增高SD大鼠体内PI3K、Akt及其相应的磷酸化蛋白表达水平,同时显著升高肌酐、尿素氮、碱性磷酸酶、IL-6以及TNF-α的水平,揭示AAI可能通过激活PI3K/Akt信号通路诱发炎症,进而加重脏器损伤。

4.4. 其他可能的机制分析

药物性肝损伤(drug-induced liver injury, DILI)是一种由各类化学药物、生物制剂、传统中药,保健品等所诱发得肝损伤 [50]。Liu等给予人肝细胞HL-7702 12 μg/mL剂量的AAs,48 h后收集细胞样品,对代谢物进行分析后确定了神经鞘氨酸代谢、脂肪酸氧化、氧化应激等途径相关的8种常见的肝细胞损伤潜在生物标志物。这其中C16鞘氨醇(C16 Sphinganine)、鞘氨醇(Sphinganine)、谷氨酸–甘氨酸(Glutamic-Glycine, Glu-Gly),N1-乙酰亚精胺(N1-Acetylspermidine)表达上调,N-十一酰甘氨酸(N-Undecanoylglycine)、谷胱甘肽(Glutathione,GSH)、L-棕榈酰肉碱(L-Palmitoylcarnitine),弹性肉碱(Elaidic carnitine)表达下调 [51]。已知鞘脂活性与自身免疫性和炎症性疾病密切相关,鞘氨醇作为鞘脂类物质不仅作为细胞膜和脂蛋白成分,而且还发挥调节细胞增殖、分化、迁移、膜运输,自噬和细胞死亡等作用 [52]。酰肉碱作为线粒体脂肪酸β氧化的特异性底物,在脂肪酸氧化过程中能促进长链脂肪酸从细胞质转移到线粒体,其水平是脂肪酸β氧化的限速步骤。脂肪酸氧化失衡会导致能量代谢紊乱、肝细胞对氧化应激的易感性等一系列功能障碍 [53]。N1-Acetylspermidine的代谢产物Glu、Gly和GSH与细胞氨基酸代谢和氧化应激有关。N1-Acetylspermidine来源于鸟氨酸和蛋氨酸,它在细胞膜的稳定、信息分子的生物合成、细胞的生长和分化等方面发挥着重要作用。Glu-Gly是一种由谷氨酸和甘氨酸组成的二肽,可能具有生理或细胞信号转导作用。而GSH调节药物代谢是药物解毒的重要机制 [54]。这些发现也为今后近一步探究AAs奠定了基础。

5. 展望

目前对于AAs致癌性的争论主要集中于外源性代谢与转运在其致癌作用进程中的作用。尽管近年来关于AAs与HCC发病之间相关性的研究取得了进展,但是针对这一现象的科学阐释仍非常有限,因此,这需要开展大规模流行病学研究来确定其是否曾暴露于AAs,对以确定暴露AAs的样本对暴露的强度、时间,潜在的病毒和非病毒辅助因子以及AAs代谢途径中的多态性等因素进行研究,还需要建立相应的动物模型,在明确客观性的基础之上,探讨AAs暴露后AAs-DNA加合物在不同靶器官的蓄积差异、致突变能力及其与HCC发生的关系,只有明确AAs在HCC进程中的作用机理,才能建立科学合理的临床风险管控体系,加强相关中药材和中成药监管力度,制定更加严格的药品监管政策,最大限度地保障患者的生命权益。

基金项目

教育部动物医学生物工程创新团队(IRT-17R88)。

参考文献

[1] Xi, L., Li, X.Q., Guo, H.R., et al. (2020) Aristolochic Acid-Induced Genotoxicity and Toxicogenomic Changes in Rodents. World Journal of Traditional Chinese Medicine, 6, 12-25.
https://doi.org/10.4103/wjtcm.wjtcm_33_19
[2] Abdullah, R., Diaz, L.N., Wesseling, S., et al. (2017) Risk Assessment of Plant Food Supplements and Other Herbal Products Containing Aristolochic Acids Using the Margin of Exposure (MOE) Approach. Food Additives and Contaminants—Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 34, 135-144.
[3] Chen, J.S., Lu, C.L., Huang, L.C., et al. (2016) Chronic Kidney Disease Is Associated with Upper Tract Urothelial Carcinoma—A Nationwide Population-Based Cohort Study in Taiwan. Urological Science, 27, S4.
https://doi.org/10.1016/j.urols.2016.05.065
[4] Hoang, M.L., Chen, C.H., Chen, P.C., et al. (2016) Aristolochic Acid in the Etiology of Renal Cell Carcinoma. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 25, 1600-1608.
https://doi.org/10.1158/1055-9965.EPI-16-0219
[5] Gold, L.S. and Slone, T.H. (2003) Aristolochic Acid, an Herbal Carcinogen, Sold on the Web after FDA Alert. The New England Journal of Medicine, 349, 1576-1577.
https://doi.org/10.1056/NEJM200310163491619
[6] Yang, J.D., Hainaut, P., Gores, G.J., et al. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604.
https://doi.org/10.1038/s41575-019-0186-y
[7] 路兆宁, 韩泽广. 马兜铃酸相关肝癌发现和验证[J]. 生命的化学, 2019, 39(5): 1045-1048.
[8] Ng, A.W.T., Poon, S.L., Huang, M.N., et al. (2017) Aristolochic Acids and Their Derivatives Are Widely Implicated in Liver Cancers in Taiwan and throughout Asia. Science Translational Medicine, 9, eaan6446.
https://doi.org/10.1126/scitranslmed.aan6446
[9] Arlt, V.M., Stiborova, M. and Schmeiser, H.H. (2002) Aristolochic Acid as a Probable Human Cancer Hazard in Herbal Remedies: A Review. Mutagenesis, 17, 265-277.
https://doi.org/10.1093/mutage/17.4.265
[10] Heinke, B., Tabea, Z., Kerstin, S., et al. (2019) Comparison of Aristolochic Acid I Derived DNA Adduct Levels in Human Renal Toxicity Models. Toxicology, 420, 29-38.
https://doi.org/10.1016/j.tox.2019.03.013
[11] Dickman, K.G., Sweet, D.H., Bonala, R., et al. (2011) Physiological and Molecular Characterization of Aristolochic Acid Transport by the Kidney. The Journal of Pharmacology and Experimental Therapeutics, 338, 588-597.
https://doi.org/10.1124/jpet.111.180984
[12] Graham, M.L., Rajat, T., Terry, C., et al. (1999) Nephropathy Caused by Chinese Herbs in the UK. The Lancet, 354, 481-482.
https://doi.org/10.1016/S0140-6736(99)03380-2
[13] Liu, X.Y., Liu, Y.Q., Cheng, M.C., et al. (2015) Application of Ultra High Performance Liquid Chromatography-Mass Spectrometry to Metabolomics Study of Drug-Induced Hepatotoxicity. Chinese Journal of Chromatography, 33, 683-690.
https://doi.org/10.3724/SP.J.1123.2015.04007
[14] Bhawani, D.J., Anubha, S., Vineet, G., et al. (2013) Spectroscopic and Quantum Chemical Study of an Alkaloid Aristolochic Acid I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 116, 258-269.
https://doi.org/10.1016/j.saa.2013.07.036
[15] Yoshiharu, O., Radha, B., Sivaprasad, A., et al. (2019) Bioactivation Mechanisms of N-Hydroxyaristolactams: Nitroreduction Metabolites of Aristolochic Acids. Environmental and Molecular Mutagenesis, 60, 792-806.
https://doi.org/10.1002/em.22321
[16] Jadot, I., Declèves, A.E., Nortier, J., et al. (2017) An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Molecular Science, 18, 297.
https://doi.org/10.3390/ijms18020297
[17] Lord, G.M., Cook, T., Arlt, V.M., et al. (2001) Urothelial Malignant Disease and Chinese Herbal Nephropathy. The Lancet (London, England), 358, 1515-1516.
https://doi.org/10.1016/S0140-6736(01)06576-X
[18] Kwak, D.H., Park, J.H., et al. (2014) Aristolochic Acid I Induces Ovarian Toxicity by Inhibition of AKT Phosphorylation. Chemical Research in Toxicology, 27, 2128-2135.
https://doi.org/10.1021/tx5003854
[19] Zhang, Y., Yang, X.Y., Zhang, Y.W., et al. (2019) Exposure to Aristolochic Acid I Compromises the Maturational Competency of Porcine Oocytes via Oxidative Stress-Induced DNA Damage. Aging, 11, 2241-2252.
https://doi.org/10.18632/aging.101911
[20] Wang, Y., Meng, F., Arlt, V.M., et al. (2011) Aristolochic Acid-Induced Carcinogenesis Examined by ACB-PCR Quantification of H-Ras and K-Ras Mutant Fraction. Mutagenesis, 26, 619-628.
https://doi.org/10.1093/mutage/ger023
[21] Wang, L., Ding, X.S., Li, C.Y., et al. (2018) Oral Administration of Aristolochia manshuriensis Kom in Rats Induces Tumors in Multiple Organs. Journal of Ethnopharmacology, 225, 81-89.
https://doi.org/10.1016/j.jep.2018.07.001
[22] Jin, K., Su, K.K., Li, T., et al. (2016) Hepatic Premalignant Alterations Triggered by Human Nephrotoxin Aristolochic Acid I in Canines. Cancer Prevention Research (Philadelphia, Pa.), 9, 324-334.
https://doi.org/10.1158/1940-6207.CAPR-15-0339
[23] Wang, L.M., Zhang, H.B., Li, C.Y., et al. (2016) Omeprazole Alleviates Aristolochia manshuriensis Kom-Induced Acute Nephrotoxicity. PLoS ONE, 11, e0164215.
https://doi.org/10.1371/journal.pone.0164215
[24] 应倩, 汪媛. 肝癌流行现况和趋势分析[J]. 中国肿瘤, 2020, 29(3): 185-191.
[25] 李玉. 马兜铃酸诱导的巨噬细胞极化对肝癌细胞迁移及侵袭作用初探[C]//中国中西医结合学会基础理论专业委员会. 第15届中国中西医结合学会基础理论专业委员会学术年会暨第二届广东省中西医结合学会转化医学专业委员会年会论文集. 中国中西医结合学会, 2019: 37-38.
[26] Lu, Z.N., Luo, Q., Zhao, L.N., et al. (2019) The Mutational Features of Aristolochic Acid-Induced Mouse and Human Liver Cancers. Hepatology (Baltimore, Md.), 71, 929-942.
https://doi.org/10.1101/507301
[27] Bhuban, R., Tapas, K.S., Kunal, P., et al. (2020) Herbometallic Nano-Drug Inducing Metastatic Growth Inhibition in Breast Cancer through Intracellular Energy Depletion. Molecular Biology Reports: An International Journal on Molecular and Cellular Biology, 47, 3745-3763.
https://doi.org/10.1007/s11033-020-05467-7
[28] Kan, Z.Y., Zheng, H.C., Liu, X., et al. (2013) Whole-Genome Sequencing Identifies Recurrent Mutations in Hepatocellular Carcinoma. Genome Research, 23, 1422-1433.
[29] Lin, D.C., Mayakonda, A., Dinh, H.Q., et al. (2017) Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer Research, 77, 2255-2265.
https://doi.org/10.1158/0008-5472.CAN-16-2822
[30] Cancer Genome Atlas Research Network (2017) Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 169, 1327-1341.e23.
[31] Eric, L., Jayendra, S., Victor, R., et al. (2017) Mutational Signatures Reveal the Dynamic Interplay of Risk Factors and Cellular Processes during Liver Tumorigenesis. Nature Communications, 8, Article No. 1315.
https://doi.org/10.1038/s41467-017-01358-x
[32] Fujimoto, A., Furuta, M., Totoki, Y., et al. (2016) Whole-Genome Mutational Landscape and Characterization of Noncoding and Structural Mutations in Liver Cancer. Nature Genetics, 48, 500-509.
[33] Yasushi, T., Kenji, T., Kyle, R.C., et al. (2014) Trans-Ancestry Mutational Landscape of Hepatocellular Carcinoma Genomes. Nature Genetics, 46, 1267-1273.
[34] Zhai, W.W., Lim, T.K.H., Zhang, T., et al. (2017) The Spatial Organization of Intra-Tumour Heterogeneity and Evolutionary Trajectories of Metastases in Hepatocellular Carcinoma. Nature Communications, 8, Article No. 4565.
https://doi.org/10.1038/ncomms14565
[35] Ahn, S.M., Jang, S.J., Shim, J.H., et al. (2014) Genomic Portrait of Resectable Hepatocellular Carcinomas: Implications of RB1 and FGF19 Aberrations for Patient Stratification. Hepatology, 60, 1972-1982.
https://doi.org/10.1002/hep.27198
[36] Zou, S.S., Li, J.R., Zhou, H.B., et al. (2014) Mutational Landscape of Intrahepatic Cholangiocarcinoma. Nature Communications, 5, Article No. 5696.
https://doi.org/10.1038/ncomms6696
[37] Xue, R.D., Chen, L., Zhang, C., et al. (2019) Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer Cell, 35, 932-947.
https://doi.org/10.1016/j.ccell.2019.04.007
[38] Debelle, F.D., Vanherweghem, J.L. and Nortier, J.L. (2008) Aristolochic Acid Nephropathy: A Worldwide Problem. Kidney International, 74, 158-169.
https://doi.org/10.1038/ki.2008.129
[39] Kim, J.Y., Leem, J. and Jeon, E.J. (2019) Protective Effects of Melatonin against Aristolochic Acid-Induced Nephropathy in Mice. Biomolecules, 10, 11.
https://doi.org/10.3390/biom10010011
[40] Arlt, V.M., Stiborova, M., vom Brocke, J., et al. (2007) Aristolochic Acid Mutagenesis: Molecular Clues to the Aetiology of Balkan Endemic Nephropathy-Associated Urothelial Cancer. Carcinogenesis, 28, 2253-2261.
https://doi.org/10.1093/carcin/bgm082
[41] Stiborova, M., Frei, E., Sopko, B., et al. (2003) Human Cytosolic Enzymes Involved in the Metabolic Activation of Carcinogenic Aristolochic Acid: Evidence for Reductive Activation by Human NAD(P)H: Quinone Oxidoreductase. Carcinogenesis, 24, 1695-1703.
https://doi.org/10.1093/carcin/bgg119
[42] Stiborova, M., Barta, F., Levova, K., et al. (2015) A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches. International Journal of Molecular Sciences, 16, 27561-27575.
https://doi.org/10.3390/ijms161126047
[43] Stiborova, M., Frei, E., Arlt, V.M., et al. (2008) Metabolic Activation of Carcinogenic Aristolochic Acid, a Risk Factor for Balkan Endemic Nephropathy. Mutation Research, 658, 55-67.
https://doi.org/10.1016/j.mrrev.2007.07.003
[44] Milichovský, J., Barta, F., Schmeiser, H.H., et al. (2016) Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1. International Journal of Molecular Sciences, 17, 213.
https://doi.org/10.3390/ijms17020213
[45] 周伟敏. PDK1通过PI3K/AKT信号通路介导肾细胞癌生物学行为及机制研究[D]: [博士学位论文]. 南昌: 南昌大学, 2019.
[46] Yang, L., Li, X.M., Wang, S.X., et al. (2005) Peritubular Capillary Injury in Chinese Herb Guan-Mu-Tong-Induced Acute Tubular Necrosis. Chinese Journal of Internal Medicine, 44, 525-529.
[47] Dimmeler, S. and Zeiher, A.M. (2000) Akt Takes Center Stage in Angiogenesis Signaling. Circulation Research, 86, 4-5.
https://doi.org/10.1161/01.RES.86.1.4
[48] Shi, H. and Feng, J.M. (2011) Aristolochic Acid Induces Apoptosis of Human Umbilical Vein Endothelial Cells in Vitro by Suppressing PI3K/Akt Signaling Pathway. Acta Pharmaceutica Sinica, 32, 1025-1030.
https://doi.org/10.1038/aps.2011.74
[49] 杨召聪, 陆茵, 顾亚琴, 等. 马兜铃酸I对大鼠体内PI3K/Akt/NF-κB通路的影响κ[J]. 南京中医药大学学报, 2015, 31(3): 250-253.
[50] Einar, S.B., Ottar, M., Bergmann, H.K., et al. (2013) Incidence, Presentation, and Outcomes in Patients with Drug-Induced Liver Injury in the General Population of Iceland. Gastroenterology, 144, 1419-1425.
https://doi.org/10.1053/j.gastro.2013.04.042
[51] Liu, X.Y., Liu, Y.Q., Cheng, M.C., et al. (2015) Metabolomic Responses of Human Hepatocytes to Emodin, Aristolochic Acid, and Triptolide: Chemicals Purified from Traditional Chinese Medicines. Journal of Biochemical and Molecular Toxicology, 29, 533-543.
https://doi.org/10.1002/jbt.21724
[52] Davies, L., Fassbender, K. and Walter, S. (2013) Sphingolipids in Disease. In: Sphingolipids in Neuroinflammation, Vol. 216 of Handbook of Experimental Pharmacology, Springer, Berlin, 421-430.
https://doi.org/10.1007/978-3-7091-1511-4_21
[53] Roe, D.S., Yang, B.Z., Vianey-Saban, C., et al. (2006) Differentiation of Long-Chain Fatty Acid Oxidation Disorders Using Alternative Precursors and Acylcarnitine Profiling in Fibroblasts. Molecular Genetics and Metabolism, 87, 40-47.
https://doi.org/10.1016/j.ymgme.2005.09.018
[54] Sessa, A. and Perin, A. (1991) Increased Synthesis of N1-Acetylspermidine in Hepatic Preneoplastic Nodules and Hepatomas. Cancer Letters, 56, 159-163.
https://doi.org/10.1016/0304-3835(91)90091-U