一类新的非线性分数阶微分方程多点边值问题的唯一解
Unique Solutions for a New Class of Multi-Point Boundary Value Problem of Nonlinear Fractional Differential Equations
DOI: 10.12677/AAM.2020.99182, PDF, HTML, XML, 下载: 705  浏览: 4,431  科研立项经费支持
作者: 邢高峰:太原理工大学数学学院,山西 太原;张玲玲*:太原理工大学数学学院,山西 太原;北京理工大学爆炸科学与技术国家重点实验室,北京
关键词: 分数阶微分方程混合单调算子存在唯一性Fractional Differential Equations The Mixed Monotone Operator Existence and Uniqueness
摘要: 本文研究了一类新的高阶分数阶微分方程多点边值问题。首先,我们计算得到了G(t,s),同时构造了所研究问题的算子方程,然后利用新集合Ph,e中的混合单调算子不动点定理及G(t,s)的性质,得出了此类方程解的存在唯一性。最后,给出一个例子证明方法的有效性。
Abstract: In this paper, we study a new class of higher-order fractional differential equations with multi-point boundary value problems. First, we obtain G(t,s) through calculation, and construct the operator equation of the problem under study. Then, using the fixed point theorem of the mixed monotone operator in the new set Ph,e and the properties of G(t,s), the uniqueness of the solution of this type of equation is obtained. Finally, an example is given to illustrate the effectiveness and feasibility.
文章引用:邢高峰, 张玲玲. 一类新的非线性分数阶微分方程多点边值问题的唯一解[J]. 应用数学进展, 2020, 9(9): 1546-1555. https://doi.org/10.12677/AAM.2020.99182

1. 引言

本文,我们研究了一类高阶分数阶微分方程的多点边值问题,方程如下:

{ D 0 + γ z ( t ) + h ( t , z ( t ) , z ( t ) ) = c , 0 < t < 1 , z ( 0 ) = D 0 + v 1 z ( 0 ) = = D 0 + v n 2 z ( 0 ) = 0 , i 1 < v i i , [ D 0 + σ z ( t ) ] t = 1 = j = 1 p + 1 a j D 0 + σ z ( ξ j ) , (1)

其中 n 1 < γ n n N n 3 γ σ > 1 0 < j = 1 p + 1 a j ξ j γ σ 1 < 1 a j ( 0 , + ] ξ j ( 0 , 1 ) c > 0 n ( i + 1 ) < γ v i n i ( i = 1 , 2 , , n 2 ) h : [ 0 , 1 ] × [ e * , + ) × [ e * , + ) ( , + ) 是连续的函数, D 0 + γ ( D 0 + σ ) γ ( σ ) 阶Riemann-Liouville分数阶导数。

近年来,非线性分数阶微分方程的边值问题引起了诸多学者的关注,这不仅得益于分数阶微分方程算子理论的发展,更与分数阶微分方程的数学模型在各相关领域的广泛应用密不可分。比如,经济学,工程学,生物医学工程及化学等领域,见 [1] - [8]。

文献 [9] 中,翟研究了如下分数阶微分方程两点边值问题:

{ D 0 + ν y ( t ) = f ( t , y ( t ) , y ( t ) ) + g ( t , y ( t ) ) , 0 < t < 1 , n 1 < ν n , y ( i ) ( 0 ) = 0 , 0 i n 2 , [ D 0 + σ y ( t ) ] t = 1 = 0 , 1 σ n 2. (2)

作者通过使用带扰动的混合单调算子不动点理论给出了方程正解的存在唯一性。在此基础上,还构造了两列迭代序列逼近解。文献 [10] 中,Jleli M和Samet B使用混合单调算子理论得到了此方程的正解。

文献 [11] 中,翟探究了如下带积分边值的分数阶微分方程解的存在性问题:

{ D 0 + ν y ( t ) + f ( t , y ( t ) ) = a , 0 < t < 1 , 2 < ν < 3 , y ( 0 ) = y ( 0 ) = 0 , 0 i n 2 , y ( 1 ) = β 0 1 y ( s ) d s , 2 β n 2 (3)

翟介绍了一个新的 φ - ( h , e ) -凹算子,然后在不需要上下解存在的条件下,利用单调递增的 φ - ( h , e ) -凹算子的不动点定理得到了唯一解。

文献 [12] 中,张和王探究了一类新的分数阶微分方程两点边值问题,如下:

{ D 0 + ν y ( t ) + f ( t , y ( t ) , y ( t ) ) = a , 0 < t < 1 , n 1 < ν n , y ( i ) ( 0 ) = 0 , 0 i n 2 , [ D 0 + β y ( t ) ] t = 1 = 0 , 2 β n 2. (4)

作者通过使用集合 P h , e 中的非线性混合单调算子的不动点定理和单调迭代技巧得到了方程的唯一解,且算子不需要紧性和连续性条件。

对比 [9] [10] [11],我们不仅改变了方程的边值条件,而且将两点边值问题概括到多点边值问题,同时方程的解拓展到了新的集合 P h , e 。显然,问题(1)在其他文章里少有研究。本文通过使用新集合 P h , e 中的混合单调算子不动点定理得到了方程(1)的唯一解,同时我们可以构造迭代序列逼近解。

文章框架如下:第二部分,我们给出了一些定义,记号,引理;第三部分,通过使用 P h , e 上的混合单调算子不动点定理得到了所研究方程的唯一解;第四部分,给出一个例子证明方程研究方法的有效性。

2. 预备知识

为了方便阅读,我们先给出一些基本的定义及引理,见 [13] [14] [15]。

定义2.1 [13] 令 γ > 0 ( γ R ) ,那么 z [ 0 , + ) R γ 阶Riemann-Liouville分数阶微分可以写作:

D 0 + γ z ( t ) = 1 Γ ( n γ ) ( d d t ) n 0 t z ( s ) ( t s ) n ( γ + 1 ) d s .

定义2.2 [13] 假设 z C [ 0 , 1 ] L 1 [ 0 , 1 ] ,那么 I 0 + γ D 0 + γ z ( t ) = c 1 t γ 1 + c 2 t γ 2 + + c n t γ n , γ > 0 ,其中 c i R , i = 1 , 2 , 3 , , n ( n = [ γ ] + 1 )

定义2.3 [14] 若 z L 1 [ 0 , 1 ] , σ > 0 , ν > 0 ,那么有 D σ t ν 1 = Γ ( ν ) Γ ( ν σ ) t ν σ 1

引理2.1 令 z C [ 0 , 1 ] ,那么非线性问题

{ D 0 + γ z ( t ) + h ( t ) = 0 , 0 < t < 1 , z ( 0 ) = D 0 + v 1 z ( 0 ) = = D 0 + v n 2 z ( 0 ) = 0 , i 1 < v i i , [ D 0 + σ z ( t ) ] t = 1 = j = 1 p + 1 a j D 0 + σ z ( ξ j ) , (5)

的唯一解为 z ( t ) = 0 1 K ( t , s ) h ( s ) d s ,其中 K ( t , s ) 是格林函数,具体如下:

K ( t , s ) = K 1 ( t , s ) + t γ 1 1 j = 1 p + 1 a j ξ j γ σ 1 j = 1 p + 1 a j K 2 ( ξ j , s )

K 1 ( t , s ) = { ( 1 s ) γ σ 1 t γ 1 ( t s ) γ 1 Γ ( γ ) , 0 s t 1 , ( 1 s ) γ σ 1 t γ 1 Γ ( γ ) , 0 t s 1 ,

K 2 ( t , s ) = { ( ( 1 s ) t ) γ σ 1 ( t s ) γ σ 1 Γ ( γ ) , 0 s t 1 , ( ( 1 s ) t ) γ σ 1 Γ ( γ ) , 0 t s 1.

证明:由定义2.2和(5)的第一个方程,可以得到

z ( t ) = I 0 + γ h ( s ) + c 1 t γ 1 + c 2 t γ 2 + + c n t γ n . (6)

(6)中代入 z ( 0 ) = 0 ,可以得到 c n = 0 。那么有

z ( t ) = I 0 + γ h ( s ) + c 1 t γ 1 + c 2 t γ 2 + + c n 1 t γ ( n 1 ) . (7)

对(7)求 v 1 th 阶导,由定义2.3,得到

D 0 + v 1 z ( t ) = I 0 + γ v 1 h ( t ) + c 1 Γ ( γ ) Γ ( γ v 1 ) t γ v 1 1 + c 2 Γ ( γ 1 ) Γ ( γ v 1 1 ) t γ v 1 2 + + c n 1 Γ ( γ n + 2 ) Γ ( γ v 1 n + 2 ) t γ v 1 ( n 1 )

再结合(5)的第二个方程和 n 2 < γ v 1 n 1 ,可以推出 c n 1 = 0

同样的方法,对(7)求 v i ( i = 2 , , n 2 ) 阶导,就可得到 c n 2 = = c 3 = c 2 = 0

因此,问题(1)的解等价于

z ( t ) = I 0 + γ h ( t ) + c 1 t γ 1 . (8)

再对(8)求 σ 阶导,代入(5)中第三个方程,计算得到: c 1

c 1 = 0 1 ( 1 s ) γ σ 1 h ( s ) d s j = 1 p + 1 a j 0 ξ j ( ξ j s ) γ γ σ 1 h ( s ) d s Γ ( γ ) ( 1 j = 1 p + 1 a j ξ j γ σ 1 ) (9)

将(9)代入(8)得,问题(1)的解为:

z ( t ) = 0 1 K 1 ( t , s ) h ( s ) d s + t γ 1 1 j = 1 p + 1 a j ξ j γ σ 1 j = 1 p + 1 a j 0 1 K 2 ( ξ j , s ) h ( s ) d s = 0 1 K ( t , s ) h ( s ) d s

引理2.2 [15] 格林函数 K ( t , s ) 有如下性质:

0 j = 1 p + 1 a j K 2 ( ξ j , s ) 1 j = 1 p + 1 a j ξ j γ σ 1 t γ 1 Γ ( γ ) K ( t , s ) ( 1 + j = 1 p + 1 a j 1 j = 1 p + 1 a j ξ j γ σ 1 ) ( 1 s ) γ σ 1 t γ 1

接下来,我们给出有序Banach空间中的一些定义和引理,见 [11] [16] [17] [18]。

定义2.4 [16] 假设 ( E , ) 实Banach空间,其上的半序关系由锥 P E 定义,即 x y 当且仅当 y x P 。若 x y y x ,则有 y > x x < y 。记 θ 为E中的零元素。

定义2.5 [17] 非空闭凸集P称为锥,若满足:

1) x P , k 0 k x P

2) x P , x P x = θ

定义2.6 [18] 对所有 x , y E ,记号 x ~ y 表示,存在 λ > 0 , μ > 0 满足 λ x y μ x 。对于给定的 h P h θ 。我们记集合 P h = { x E | x ~ h }

定义2.7 [11] 令 h P ( h θ ) , e P θ e < h ,我们定义集合 P h , e = { x E | x + e P h } 。那么

P h , e = { there exist μ = μ ( e , h , x ) > 0 , ν = ν ( e , h , x ) > 0 such that μ h x + e ν h } .

定义2.8 [16] 算子 A : P × P P 为混合单调算子,若 A ( x , y ) 关于x单调递增,关于y单调递减,即 u i , v i ( i = 1 , 2 ) P u 1 u 2 , v 1 v 2 ,则 A ( u 1 , v 1 ) A ( u 2 , v 2 )

定义2.9 [11] A : P h , e E φ - ( h , e ) -凹算子,若满足:对于任意 x P h , e λ ( 0 , 1 ) ,存在 φ ( λ ) > λ 满足:

A ( λ x + ( 1 λ ) e ) φ ( λ ) A ( x ) + ( φ ( λ ) 1 ) e .

[12] 中,作者考虑了新集合 P h , e 中的算子方程 A ( x , x ) = x 。其中,A是个混合单调算子。张和王得到如下结论:

引理2.3 [12] P是正规锥,假设 T : P h , e × P h , e E 是混合单调算子且满足:

(I1) 存在 h E , e P θ e h , h θ 满足 T ( h , h ) P h , e

(I2) 对于任意的 u , v P h , e , λ ( 0 , 1 ) ,存在 φ ( λ ) > λ 满足

T ( λ u + ( λ 1 ) e , 1 λ v + ( 1 λ 1 ) e ) φ ( λ ) T ( u , v ) + ( φ ( λ ) 1 ) e

那么:

(i) 存在 u 0 , v 0 P h , e 满足 u 0 < v 0 , u 0 T ( u 0 , v 0 ) T ( v 0 , u 0 ) v 0

(ii) 算子T有唯一不动点 x * P h , e

(iii) 对于任意初值 x 0 , y 0 P h , e ,构造迭代序列 x n = T ( x n 1 , y n 1 ) , y n = T ( y n 1 , x n 1 ) , n = 1 , 2 , 得到 x n x * , y n x * ( n )

3. 主要结论

本部分,我们通过使用引理2.3求解方程的(1)的解。我们在Banach空间E中考虑, E = { x | x C [ 0 , 1 ] } 。E的范数为 x = sup { x ( t ) | t [ 0 , 1 ] } t [ 0 , 1 ] ,若 u v ,则其上的半序关系为 u ( t ) v ( t )

更进一步地,定义 P E P = { x E : x ( t ) 0 , t [ 0 , 1 ] } 。显然,P是E中的正规锥。

给出主要结论之前,先给出e(t)及其范围。

e ( t ) = Q P c ( γ σ ) Γ ( γ ) t γ 1 c γ Γ ( γ ) t γ , t [ 0 , 1 ] 。其中, P = 1 j = 1 p + 1 a j ξ j γ σ 1 , Q = 1 j = 1 p + 1 a j ξ j γ δ

证明:由引理2.1,得到

e ( t ) = c 0 1 K ( t , s ) d s = c 0 1 { K 1 ( t , s ) + t γ 1 P j = 1 P + 1 a j K 2 ( ξ j , s ) } d s = c { 0 1 ( 1 s ) γ σ 1 Γ ( γ ) t γ 1 d s 0 t ( t s ) γ 1 Γ ( γ ) d s + t γ 1 P j = 1 P + 1 a j [ 0 1 ( ( 1 s ) ξ j ) γ σ 1 Γ ( γ ) d s 0 ξ j ( ξ j s ) γ σ 1 Γ ( γ ) d s ] } = c { t γ 1 ( γ σ ) Γ ( γ ) t γ γ Γ ( γ ) + t γ 1 P j = 1 P + 1 a j [ ξ j γ σ 1 ( γ σ ) Γ ( γ ) ξ j γ σ ( γ σ ) Γ ( γ ) ] } (10)

= c { t γ 1 ( γ σ ) Γ ( γ ) + j = 1 P + 1 a j ξ j γ σ 1 j = 1 P + 1 a j ξ j γ σ P ( γ σ ) Γ ( γ ) t γ 1 t γ γ Γ ( γ ) } = c { P + j = 1 P + 1 a j ξ j γ σ 1 j = 1 P + 1 a j ξ j γ σ P ( γ σ ) Γ ( γ ) t γ 1 t γ γ Γ ( γ ) } = c { Q P t γ 1 ( γ σ ) Γ ( γ ) t γ γ Γ ( γ ) } = Q P c ( γ σ ) Γ ( γ ) t γ 1 c γ Γ ( γ ) t γ

对所有的 t [ 0 , 1 ] ,一方面,

e ( t ) = Q P c ( γ σ ) Γ ( γ ) t γ 1 c γ Γ ( γ ) t γ Q P c ( γ σ ) Γ ( γ ) t γ 1 = N t γ 1 = h ( t ) .

另一方面,根据 Q P 0 , γ > σ ,我们得到

e ( t ) = Q P c ( γ σ ) Γ ( γ ) t γ 1 c γ Γ ( γ ) t γ = c Q γ t ( γ σ ) P P γ ( γ σ ) Γ ( γ ) t γ 1 0.

因此, 0 e ( t ) h ( t ) 。除此之外, P h , e = { z C [ 0 , 1 ] | z + e P h }

由引理2.1和(10),我们得到问题(1)的解的形式可化为如下积分形式:

z ( t ) = 0 1 K ( t , s ) h ( s , z ( s ) , z ( s ) ) d s e ( t ) = 0 1 K ( t , s ) h ( s , z ( s ) , z ( s ) ) d s Q P c ( γ σ ) Γ ( γ ) t γ 1 + c γ Γ ( γ ) t γ ,

其中, K ( t , s ) 已给出。

我们定义算子A:

A ( z , z ) ( t ) = 0 1 K ( t , s ) h ( s , z ( s ) , z ( s ) ) d s e ( t ) , t [ 0 , 1 ] , z ( t ) P h , e

显然,z(t)是问题(1)的解,当且仅当 z ( t ) = A ( z , z ) ( t )

定理3.1 假设 h : [ 0 , 1 ] × [ e * , + ) × [ e * , + ) [ e * , + ) 满足:

(H1) 存在两个函数 f , g [ 0 , 1 ] × [ e * , + ) ( , + ) 满足 h ( t , x , y ) = f ( t , x ) + g ( t , y )

(H2) f : [ 0 , 1 ] × [ e * , + ) ( , + ) , g : [ 0 , 1 ] × [ e * , + ) ( , + ) 是连续函数且 e * = max { e ( t ) : t [ 0 , 1 ] }

(H3) 对任意 t [ 0 , 1 ] f ( t , x ) 关于 x [ e * , + ) 单调递增, g ( t , y ) 关于 y [ e * , + ) 单调递减;

(H4) 对于任意的 λ ( 0 , 1 ) ,存在 ϕ 1 ( λ ) , ϕ 2 ( λ ) ( λ , 1 ) 满足

f ( t , λ x + ( λ 1 ) z ) φ 1 f ( t , x ) , g ( t , λ 1 y + ( λ 1 1 ) z ) φ 2 g ( t , y ) ,

其中 t [ 0 , 1 ] , x ( , + ) , y ( , + ) , z [ 0 , e * ]

(H5) 对任意 t [ 0 , 1 ] ,都有 f ( t , 0 ) 0 f ( t , 0 ) 0 g ( t , N ) 0 ,且 g ( t , N ) 0 ,其中 N = Q P c ( γ σ ) Γ ( γ ) 0

那么,我们有如下结果:

(i) 存在 u 0 , v 0 P h , e 满足

u 0 ( t ) 0 1 K ( t , s ) ( f ( t , u 0 ( s ) ) + g ( t , v 0 ( s ) ) ) d s e ( t ) , t [ 0 , 1 ] v 0 ( t ) 0 1 K ( t , s ) ( f ( t , v 0 ( s ) ) + g ( t , u 0 ( s ) ) ) d s e ( t ) , t [ 0 , 1 ]

其中,e(t)在(10)中给出;

(ii) 问题(1)有唯一不动点 z * P h , e ,其中 h ( t ) = N t γ 1

(iii) 对于任意 x 0 , y 0 P h , e ,构造迭代序列

{ x n ( t ) = 0 1 K ( t , s ) ( f ( s , x n 1 ( s ) ) + g ( s , y n 1 ( s ) ) ) d s e ( t ) , n = 1 , 2 , y n ( t ) = 0 1 K ( t , s ) ( f ( s , y n 1 ( s ) ) + g ( s , x n 1 ( s ) ) ) d s e ( t ) , n = 1 , 2 ,

我们有 x n , y n z * ( n + )

证明:

对于任意 z P h , e ,我们考虑算子的如下形式:

A ( z , z ) ( t ) = 0 1 K ( t , s ) ( f ( s , z ( s ) ) + g ( s , z ( s ) ) ) d s e ( t ) , t [ 0 , 1 ]

(a) 我们先证明 A : P h , e × P h , e E 是混合单调算子。

对于所有的 u i , v i P h , e , i = 1 , 2 。令 u 1 u 2 , v 1 v 2 ,那么,有 u 1 ( t ) u 2 ( t ) , v 1 ( t ) v 2 ( t ) 。根据条件(H3),可以得到

A ( u 1 , v 1 ) ( t ) = 0 1 K ( t , s ) ( f ( s , u 1 ( s ) ) + g ( s , v 1 ( s ) ) ) d s e ( t ) 0 1 K ( t , s ) ( f ( s , u 2 ( s ) ) + g ( s , v 2 ( s ) ) ) d s e ( t ) A ( u 2 , v 2 ) ( t )

因此, A : P h , e × P h , e E 是混合单调算子。

(b) 证明 A ( h , h ) P h , e 。需要证明 A ( h , h ) + e P h 。由 K ( t , s ) 的性质及条件(H3),

A ( h , h ) + e ( t ) = 0 1 K ( t , s ) ( f ( s , h ( s ) ) + g ( s , h ( s ) ) ) d s = 0 1 K ( t , s ) ( f ( s , N s γ 1 ) + g ( s , N s γ 1 ) ) d s 0 1 ( 1 + j = 1 p + 1 a j 1 j = 1 p + 1 a j ξ j γ σ 1 ) ( 1 s ) γ σ 1 Γ ( γ ) t γ 1 ( f ( s , N s γ 1 ) + g ( s , N s γ 1 ) ) d s 1 Γ ( γ ) ( 1 + j = 1 p + 1 a j 1 j = 1 p + 1 a j ξ j γ σ 1 ) 0 1 ( 1 s ) γ σ 1 ( f ( s , N ) + g ( s , 0 ) ) d s t γ 1 = 1 N Γ ( γ ) ( 1 + j = 1 p + 1 a j 1 j = 1 p + 1 a j ξ j γ σ 1 ) 0 1 ( 1 s ) γ σ 1 ( f ( s , N ) + g ( s , 0 ) ) d s h ( t ) ,

A ( h , h ) + e ( t ) = 0 1 K ( t , s ) ( f ( s , N s γ 1 ) + g ( s , N s γ 1 ) ) d s 0 1 j = 1 p + 1 a j K 2 ( ξ j , s ) 1 j = 1 p + 1 a j ξ j γ σ 1 t γ 1 ( f ( s , N s γ 1 ) + g ( s , N s γ 1 ) ) d s 0 1 j = 1 p + 1 a j K 2 ( ξ j , s ) 1 j = 1 p + 1 a j ξ j γ σ 1 ( f ( s , 0 ) + g ( s , N ) ) d s t γ 1 = 0 1 j = 1 p + 1 a j K 2 ( ξ j , s ) N ( 1 j = 1 p + 1 a j ξ j γ σ 1 ) ( f ( s , 0 ) + g ( s , N ) ) d s h ( t ) .

l 1 = 0 1 j = 1 p + 1 a j K 2 ( ξ j , s ) N ( 1 j = 1 p + 1 a j ξ j γ σ 1 ) ( f ( s , 0 ) + g ( s , N ) ) d s ,

l 2 = 1 N Γ ( γ ) ( 1 + j = 1 p + 1 a j 1 j = 1 p + 1 a j ξ j γ σ 1 ) 0 1 ( 1 s γ σ 1 ) ( f ( s , N ) + g ( s , 0 ) ) d s ,

那么,根据条件(H5),有 l 2 l 1 0 。即 A ( h , h ) P h , e

(c) 我们证 φ ( λ ) = min { φ 1 ( λ ) , φ 2 ( λ ) } A : P h , e × P h , e E φ - ( h , e ) 凹算子。

令,对于 u , v P h , e , λ ( 0 , 1 ) 由(H4),易得

A ( λ u + ( λ 1 ) e , λ 1 v + ( λ 1 1 ) e ) ( t ) = 0 1 K ( t , s ) ( f ( s , λ u + ( λ 1 ) e ) + g ( s , λ 1 v + ( λ 1 1 ) e ) ) d s e ( t ) 0 1 K ( t , s ) ( φ 1 ( λ ) f ( s , u ( s ) ) + φ 2 ( λ ) g ( s , v ( s ) ) ) d s e ( t ) φ ( λ ) 0 1 K ( t , s ) ( f ( s , u ( s ) ) + g ( s , v ( s ) ) ) d s e ( t ) + ( φ ( t ) 1 ) e ( t ) = φ ( λ ) A ( u , v ) + ( φ ( λ ) 1 ) e ( t ) ,

因此, A : P h , e × P h , e E φ - ( h , e ) 凹算子。相应地,由引理2.3可知,算子 A ( z , z ) = z 有唯一不动点 z * P h , e ,且 z * 是如下方程的唯一解:

z * ( t ) = 0 1 K ( t , s ) ( f ( s , z * ( s ) ) + g ( s , z * ( s ) ) ) d s e ( t ) , t [ 0 , 1 ] .

进一步地,对于任意 x 0 , y 0 P h , e ,构造序列

{ x n ( t ) = 0 1 K ( t , s ) ( f ( s , x n 1 ( s ) ) + g ( s , y n 1 ( s ) ) ) d s e ( t ) , n = 1 , 2 , y n ( t ) = 0 1 K ( t , s ) ( f ( s , y n 1 ( s ) ) + g ( s , x n 1 ( s ) ) ) d s e ( t ) , n = 1 , 2 ,

可得, x n , y n z * ( n + )

4. 例子

考虑如下问题:

{ D 0 + 7 2 z ( t ) + ( t 5 2 Γ ( 7 2 ) ( 23 24 7 t ) ) 1 2 ( 7 Γ ( 7 2 ) 137 ) 1 2 ( x + 137 7 Γ ( 7 2 ) ) 1 2 + [ t 5 2 Γ ( 7 2 ) ( 23 24 7 t ) ( 7 Γ ( 7 2 ) 137 y + 1 ) + y + 137 7 Γ ( 7 2 ) ] 1 3 = 12 , z ( 0 ) = D 0 + 1 2 z ( 0 ) = D 0 + 3 2 z ( 0 ) = D 0 + 5 2 z ( 0 ) = 0 , [ D 0 + 3 2 z ( t ) ] t = 1 = D 0 + 5 2 z ( 1 2 ) + D 0 + 5 2 z ( 1 3 ) . (11)

其中, γ = 7 2 , σ = 3 2 , c = 12 , v 1 = 1 2 , v 2 = 3 2 , v 3 = 5 2 , p + 1 = 2 ,例子中的函数按如下定义:

f ( t , x ) = ( t 5 2 Γ ( 7 2 ) ( 23 24 t 7 ) ) 1 2 ( 137 7 Γ ( 7 2 ) ) 1 2 ( x + 137 7 Γ ( 7 2 ) ) 1 2 = [ e ( t ) e * x + e ( t ) ] 1 2 g ( t , y ) = [ t 5 2 Γ ( 7 2 ) ( 23 24 t 7 ) ( 7 Γ ( 7 2 ) 137 y + 1 ) + y + 137 7 Γ ( 7 2 ) ] 1 3 = [ ( e ( t ) e * + 1 ) y + e ( t ) + e * ] 1 3

其中,

e ( t ) = Q P c ( γ σ ) Γ ( γ ) t γ 1 c γ Γ ( γ ) t γ = 23 Γ ( 7 2 ) t 5 2 24 7 Γ ( 7 2 ) t 7 2 e * ( t ) = max { e ( t ) : t [ 0 , 1 ] } = 137 7 Γ ( 7 2 ) > 0

N = Q P c ( γ σ ) Γ ( γ ) = 23 Γ ( 7 2 ) 。显然 e ( t ) N t 5 2 = h ( t )

相应地我们的例子满足定理3.1的全部条件,所以问题(11)有唯一解。

对于任意 x 0 , y 0 P h , e ,构造序列

{ x n ( t ) = 0 1 K ( t , s ) ( f ( s , x n 1 ( s ) ) + g ( s , y n 1 ( s ) ) ) 23 Γ ( 7 2 ) t 5 2 + 24 7 Γ ( 7 2 ) t 7 2 , n = 1 , 2 , y n ( t ) = 0 1 K ( t , s ) ( f ( s , y n 1 ( s ) ) + g ( s , x n 1 ( s ) ) ) 23 Γ ( 7 2 ) t 5 2 + 24 7 Γ ( 7 2 ) t 7 2 , n = 1 , 2 ,

x n , y n x * , where K ( t , s ) = K 1 ( t , s ) + 6 t 5 2 K 2 ( t , s ) K ( t , s ) K ( t , s ) = { ( 1 s ) t 5 2 ( t s ) 5 2 + 7 s t 5 2 Γ ( 7 2 ) , 0 s t 1 , 6 ( 1 s ) t 5 2 Γ ( 7 2 ) , 0 t s 1.

基金项目

文章由爆炸科学与技术国家重点实验室(北京理工大学)开放项目,项目编号为KFJJ19-06M,山西省R&D重点项目(国际合作,201903D421042)资助。

参考文献

[1] Guo, D.J. (1992) Existence and Uniqueness of Positive Fixed Points for Mixed Monotone Operators and Applications. Applicable Analysis, 46, 91-100.
https://doi.org/10.1080/00036819208840113
[2] Min, D.D., Liu, L.S. and Wu, Y.H. (2018) Uniqueness of Positive Solutions for the Singular Fractional Differential Equations Involving Integral Boundary Value Conditions. Boundary Value Problems, 2018, Article No. 23.
https://doi.org/10.1186/s13661-018-0941-y
[3] Liu, L.L., Zhang, X.Q., Liu, L.S. and Wu, Y.H. (2016) Iterative Positive Solutions for Singular Nonlinear Fractional Differential Equation with Integral Boundary Conditions. Advances in Difference Equations, 2016, Article No. 154.
https://doi.org/10.1186/s13662-016-0876-5
[4] Baleanu, D., Machado, J.A.T., Albert, C. and Luo, J. (2012) Fractional Dynamics and Control. Springer, Berlin.
https://doi.org/10.1007/978-1-4614-0457-6
[5] Lakshmikantham, V. and Vatsala, A.S. (2008) Basic Theory of Fractional Differential Equations. Nonlinear Analysis: Theory, Methods & Applications, 69, 2677-2682.
https://doi.org/10.1016/j.na.2007.08.042
[6] Agarwal, R.P., O’Regan, D. and Stanek, S. (2012) Positive Solutions for Mixed Problems of Singular Fractional Differential Equations. Mathematische Nachrichten, 285, 27-41.
https://doi.org/10.1002/mana.201000043
[7] Zhang, L.L., Yamazaki, N. and Zhai, C.C. (2012) Optimal Control Problem of Positive Solutions to Second Order Impulsive Differential Equations. Zeitschrift für Analysis und ihre Anwendungen, 31, 237-250.
https://doi.org/10.1002/mana.201000043
[8] Li, C.F., Luo, X.N. and Zhou, Y. (2010) Existence of Positive Solutions of the Boundary Value Problem for Nonlinear Fractional Differential Equations. Computers & Mathematics with Applications, 59, 1363-1375.
https://doi.org/10.1016/j.camwa.2009.06.029
[9] Zhai, C.B. and Hao, M.R. (2013) Mixed Maonotone Operator Methods for the Existence and Uniqueness of Positive Solutions to Riemann-Liouville Fractional Differential Equation Boundary Value Problems. Boundary Value Problems, 2013, Article No. 85.
https://doi.org/10.1186/1687-2770-2013-85
[10] Jleli, M. and Samet, B. (2015) Existence of Positive Solutions to an Arbitrary Order Fractional Differential Equation via a Mixed Monotone Operator Method. Nonlinear Analysis: Modelling and Control, 20, 367-376.
https://doi.org/10.15388/NA.2015.3.4
[11] Zhai, C.B. and Wang, L. (2017) --Concave Operators and Applications. Journal of Mathematical Analysis and Applications, 454, 571-584.
https://doi.org/10.1016/j.jmaa.2017.05.010
[12] Zhang, L.L., Wang, H. and Wang, X.Q. (2019) New Fixed Point Theorems of Nonlinear Mixed Monotone Operator and Applications to Fractional Differential Equations. Topological Methods in Nonlinear Analysis, 54, 537-566.
[13] Zhang, L.L. and Tian, H.M. (2017) Existence and Uniqueness of Positive Solution for a Class of Nonlinear Fractional Differential Equations. Advances in Difference Equations, 2017, Article No. 114.
https://doi.org/10.1186/s13662-017-1157-7
[14] Kilbas, A. and Srivastava, H. (2006) Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.
[15] Zhang, X.G., Liu, L.S. and Wu, Y.H. (2012) The Eigenvalue Problem for A Singular Higher Order Fractional Differential Equation Involving Fractional Derivatives. Applied Mathematics and Computation, 218, 8526-8536.
https://doi.org/10.1016/j.amc.2012.02.014
[16] Zhai, C.B. and Zhang, L.L. (2011) New Fixed Point Theorems for Mixed Monotone Operators and Local Existence-Uniqueness of Positive Solutions for Nonlinear Boundary Value Problems. Journal of Mathematical Analysis and Applications, 382, 594-614.
https://doi.org/10.1016/j.jmaa.2011.04.066
[17] Zhai, C.B., Yan, W.P. and Yang, C. (2013) A Sum Operator Method for the Existence and Uniqueness of Positive Solution to Riemann-Liouville Fractional Differential Equation Boundary Value Problem. Communications in Nonlinear Science and Numerical Simulation, 18, 858-866.
https://doi.org/10.1016/j.cnsns.2012.08.037
[18] Wang, H. and Zhang, L.L. (2015) The Solution for a Class of Sum Operator Equation and Its Application to Fractional Differential Equation Boundary Value Problems. Boundary Value Problems, 2015, Article No. 203.