脂联素对慢性肾脏病的影响
The Effect of Adiponectin on Chronic Kidney Disease
DOI: 10.12677/ACM.2020.109312, PDF, HTML, XML, 下载: 505  浏览: 1,886 
作者: 邵彩荣*, 杨小娟#:延安大学附属医院肾内科,陕西 延安
关键词: 脂联素慢性肾脏病治疗Adiponectin Chronic Kidney Disease Treatment
摘要: 脂联素具有抗动脉粥样硬化、提高肝脏和骨骼肌的胰岛素敏感性、抑制促炎细胞因子的表达以及减少血小板聚集和血栓形成等作用。研究显示脂联素与慢性肾脏病的进展息息相关,因此探讨脂联素对慢性肾脏病的影响对新治疗策略的制定至关重要。
Abstract: Adiponectin has the effects of anti-atherosclerosis, increasing insulin sensitivity of the liver and skeletal muscle, inhibiting the expression of proinflammatory cytokines, and reducing platelet aggregation and thrombosis. Studies have shown that adiponectin is closely related to the progression of chronic kidney disease, so exploring the impact of adiponectin on chronic kidney disease is crucial for the development of new treatment strategies.
文章引用:邵彩荣, 杨小娟. 脂联素对慢性肾脏病的影响[J]. 临床医学进展, 2020, 10(9): 2079-2086. https://doi.org/10.12677/ACM.2020.109312

1. 引言

慢性肾脏病(chronic kidney disease, CKD)不仅是全球健康的主要问题,也与终末期肾病(end stage renal disease,ESRD)、心血管疾病(cardiovascular disease, CVD)等有关,也是全球死亡率和发病率的主要原因之一,其发病率呈指数级增长。脂联素(adiponectin, APN)是脂肪组织分泌的一种能增加胰岛素敏感性、具有抗炎以及抗动脉粥样硬化作用的蛋白质,脂联素与CKD的发展及预后有密切联系,也可为CKD的今后治疗开拓新的思路。

2. 脂联素

脂联素也被称为Acrp30、GBP28、adipoQ或apM1,其由AdipoQapM1等基因编码,并已被定位到染色体3q27,该染色体也与糖耐量减低、肥胖、血脂异常和2型糖尿病等密切相关 [1]。脂联素由白色脂肪组织分泌,约占血浆总蛋白的0.01%,浓度在0.5~30 μg/ml之间。脂联素有244个氨基酸,重量为30 kDa,在结构上它有四个部分:N末端的短信号序列、可变结构域、胶原样结构域和含有C1q的球状结构域 [2]。脂联素以不同的多聚体形式存在:低分子量脂联素(low molecular weight of adiponectin, LMW-APN)由三个脂联素分子通过其胶原结构域结合而成,还有一种六聚体的中分子量脂联素(middle molecular weight of adiponectin, MMW-APN)和高分子量脂联素(high molecularweight of adiponectin, HMW-APN) [3]。

脂联素有两个受体Adipo R1和Adipo R2,Adipo R1在肾脏的内皮细胞、足细胞、肾小球系膜细胞和近端肾小管细胞等都有表达,与腺苷单磷酸蛋白激酶(adenosine onophosphate-activated protein kinase,AMPK)的激活相关 [4]。而Adipo R2在肾脏中没有实质性表达,其与过氧化物酶体增生物激活受体(peroxisome proliferator activated receptor, PPAR) α信号通路的激活以及上调内皮一氧化氮合酶的表达有关。AdipoR1对球形脂联素的亲和力较高,而Adipo R2对球形和全长脂联素均具有中等亲和力 [5]。

3. 脂联素与CKD

3.1. 脂联素与肾功能

最近,在一项探讨非糖尿病性CKD患者脂联素水平与临床结局的研究中,共纳入196例非糖尿病性CKD患者,结果表明高水平的脂联素水与ESRD的高风险相关,而与传统的CKD危险因素、体质量指数(BMI)和代谢综合征等无关 [6]。在501名ESRD患者的CKD队列研究中,发现脂联素水平越高,死亡风险越高 [7]。这一发现与Tsigalou等 [8] 的研究一致,他们在对60名ESRD患者随访4.5年后,得出脂联素水平的升高与ESRD患者的死亡率有关的结论。

脂联素水平升高可能存在以下几个方面的原因,首先考虑肾功能不全会影响脂联素的清除,但研究表明CKD患者脂肪组织中脂联素mRNA和Adipo R1表达上调,并且在AMPK磷酸化后脂联素受体信号传导阻滞 [9]。这提示当肾功能恶化时,脂联素的反常增加可能是脂联素的抵抗作用所致,而不仅仅是清除减少的结果。其次,脂联素的增加或许是一种有益的代偿机制,在持续性损伤的环境中减少氧化负担,以对抗尿毒症介导的代谢毒素所产生的慢性炎症。

3.2. 脂联素与蛋白尿

Ohashi等 [10] 对脂联素基因敲除的小鼠和野生型小鼠进行了肾大部切除术。他们注意到与野生型小鼠相比,脂联素基因敲除小鼠的出现了蛋白尿增加、肾小球肥大以及肾间质纤维化等。Sharma等 [11] 报道脂联素基因敲除的小鼠与对照组小鼠相比,蛋白尿增多,足细胞足突融合,而给予脂联素治疗后出现蛋白尿的正常化和AMPK激活增加,活性氧化物减少。而在体外,脂联素的加入降低了分化足细胞对白蛋白的通透性。这说明了脂联素可能通过Adipo R1刺激AMPK和抑制活性氧化物的途径来减少蛋白尿,同时降低了足细胞对白蛋白的通透性,从而减轻了肾脏损伤。Rutkowski等 [12] 发现在足细胞消融的动物模型中,小鼠表现出明显的肾脏损伤,如足突融合、系膜扩张和肾小球硬化。也有研究表明腺嘌呤诱导的慢性肾脏病大鼠的肾脏中Adipo R1和Adipo R2的表达显著增加,并且与血清或尿液中的脂联素水平呈正相关 [13]。

综上,脂联素在动物实验中具有益的作用,可改善蛋白尿和肾小球肥大,还可以减轻足细胞消融后的肾小球硬化,从而减轻肾损伤。脂联素的肾脏保护作用与改善内皮功能障碍,减少氧化应激和一氧化氮合酶的表达上调有关。

然而,临床的研究表明脂联素与蛋白尿之间的关系有一种双相模式 [14]。在对1442名CKD患者的观察中,结果显示大量蛋白尿患者的脂联素水平明显高于微量蛋白尿患者和健康受试者,并且脂联素的水平的越高,蛋白尿越多 [15]。最近,Bulum等 [16] 在对202例1型糖尿病患者的研究中,发现在校正了其他因素后,脂联素与微量蛋白尿的风险无关。

因此有必要谨慎地解释人类和啮齿动物研究之间的相关性。其潜在机制尚不清楚,但是大量蛋白尿或CKD患者血清脂联素水平的升高或许是一种有益的代偿作用。蛋白尿不仅与糖尿病和肥胖症有关,也是心血管疾病的不利因素 [17]。蛋白尿与内皮细胞的功能障碍相关,而脂联素可以与血管内膜的主要胶原成分结合,并在内皮细胞受损时积聚在血管壁中。因此,脂联素可能不仅是蛋白尿的生物标记物,更有望成为心血管风险的早期生物标记物。

3.3. 脂联素与CKD合并心血管疾病

据估计,CKD患者的心血管疾病(cardiovascular disease, CVD)的患病率是普通人群的5~20倍 [18]。除糖尿病和代谢综合征外,CVD的高发率还可能与其他因素有关,脂联素和促炎细胞因子在内的脂肪因子的异常模式也是导致心血管疾病的因素 [19]。而CKD患者的脂联素水平升高是否具有心脏保护作用目前仍然存在争议。

Iwashima等 [20] 研究CKD患者的脂联素、肾功能和心血管事件之间的关系,总共有150名受试者被纳入研究,平均随访时间为32个月,结果表明脂联素每升高1 μg/mL使心血管疾病的风险降低0.86%。在脂联素水平较低的组中,既往患有缺血性心脏病患者的生存率也明显较低。同样,Becker等 [21] 对227名轻中度CKD的非糖尿病患者和76名健康受试者进行了54个月的随访,发现低脂联素水平是心血管事件的预测因素。Abdallah等 [22] 在对133名维持性血液透析患者随访,发现血液透析患者的脂联素水平是健康受试者的3倍,与第2组(ADPN ≥ 15.1 μg/ml)相比,第1组(ADPN < 15.1 μg/ml)患者发生心血管事件的风险高1.96倍。因此,他们认为低脂联素水平是血液透析患者心血管事件和死亡率的独立预测因子,其在心血管疾病的预防中具有潜力。相反,对820例CKD患者的研究表明,脂联素浓度增加与心血管死亡率直接相关,脂联素每升高1 μg/mL会导致心血管死亡率增加6% [23]。这些不一致的结果可能归因于研究人群的差异(例如性别、种族、共存疾病)。因此,需要进一步的流行病学研究来阐明CKD患者的脂联素水平与CVD之间的关系。

也有研究 [24] 称,尿脂联素可以预测2型糖尿病患者的颈动脉内膜中层厚度,且优于尿蛋白排泄率对心血管危险性的评估。血管变化早在微量蛋白尿出现之前就开始了,所以微量蛋白尿在2型糖尿病心血管风险评估中的应用就显得有限。因此,尿脂联素清除率可能会成为糖尿病肾病血管损伤的早期标志物,但仍需更多的前瞻性研究来验证。

据报道,脂联素对血管钙化有一定的保护作用 [25]。然而,对血液透析患者的研究 [26] 发现,高脂联素水平与腹主动脉钙化有关。最近,有学者 [27] 发现CKD患者的血清成纤维细胞生长因子23以及脂联素水平的升高与血管钙化相关,对这种关联的进一步研究或许能为CKD患者血管钙化的治疗带来新的启发。

3.4. 脂联素与肾性贫血

贫血是CKD的常见并发症,也是CKD和CVD进展及死亡的不利因素之一。在先前的观察研究中,脂联素水平与贫血的程度相关 [28] [29]。进而,Kim等 [30] 对此进行了深入的研究,他们探索了韩国2113名CKD患者的脂联素水平与贫血之间的关系,结果显示CKD患者脂联素水平与血红蛋白呈负相关,并且对于无贫血的患者,高水平脂联素是新发贫血的独立危险因子。这些发现都揭示了脂联素在CKD相关性贫血中的潜在作用。

目前尚不清楚为什么高脂联素水平与低血红蛋白浓度独立相关。一个合理的解释是贫血引起的组织缺氧导致缺氧诱导因子的表达增加,而在各种刺激下激活的缺氧诱导因子可显著增加脂联素的表达。另外,脂联素主要由骨髓脂肪分泌,其在骨髓微环境的调节中发挥着积极的作用。并且骨髓脂肪细胞是造血的负调节因子,而CKD患者的骨髓脂肪含量明显高于健康人群,这可以部分解释CKD患者脂联素与贫血的关系 [31] [32]。最后,有研究 [33] 表明高脂联素水平与蛋白质能量消耗的增加显著相关。鉴于营养不良对骨髓造血细胞的有害影响,蛋白质能量消耗可能是贫血和脂联素之间的一种联系。虽然脂联素与贫血的病理生理联系尚未被揭示,但贫血可能是解释脂联素对CKD患者不良反应的潜在因素,进一步研究脂联素与贫血之间的联系,脂联素也有可能成为CKD患者贫血进展的有力预测因子。

4. 脂联素与糖尿病肾病

4.1. 血清脂联素与糖尿病肾病

糖尿病肾病是由糖尿病引起的一种晚期并发症,涉及到肾脏各种类型细胞的损伤 [34]。在动物实验中,有学者 [35] 发现脂联素能有效增强2型糖尿病小鼠的抗氧化能力,促进胰岛β细胞合成和分泌胰岛素,减少糖依赖性晚期糖基化终产物的积累,且这与蛋白激酶C表达下调和蛋白激酶A表达上调有关。Kacso等 [36] 探讨了脂联素在预测2型糖尿病肾病进展中的作用,他们发现脂联素水平与尿白蛋白和肌酐的比值呈负相关,且脂联素水平越低,蛋白尿越严重。Moreno等 [37] 分析了1200多名来自意大利中南部的2型糖尿病患者的脂联素水平与GFR之间的关系,结果表明脂联素水平与GFR呈负相关。由此可见,在2型糖尿病患者中,低脂联素水平与糖尿病肾病的进展相关,而在1型糖尿病患者中,高脂联素水平是疾病的严重程度的预测指标。

4.2. 尿脂联素与糖尿病肾病

Panduru等 [38] 对2090名1型糖尿病患者的研究表明,尿脂联素是疾病进展的一个独立预测因素。此外,在大量蛋白尿的患者中,尿脂联素的增加与1型糖尿病进展为ESRD相关。Ha等 [39] 报道称,尿脂联素有助于更准确地检测糖尿病肾病的各个阶段,以预防ESRD和心血管疾病。Yamamoto等 [40] 测定了70名健康受试者、35名肥胖非糖尿病受试者和20名糖尿病患者的尿脂联素,结果显示糖尿病患者尿脂联素水平明显高于肥胖和健康受试者,并且随着GFR的降低,尿中LMW脂联素增加,而随着血糖水平的升高,尿中MMW脂联素和HMW脂联素增加。因此,他们认为尿脂联素可作为一种更加灵敏的标记物,可用于糖尿病肾病的早期检测。

这些研究提示尿脂联素对糖尿病肾病的进展有预测作用。因此,如果通过对肾功能的定期评估可以提早发现GFR下降,那么在肾功能仍在正常范围内的情况下就可以开始保护性治疗,这可能会减少甚至改善肾功能下降。

5. 治疗

Balducci等 [41] 评估了运动对2型糖尿病和代谢综合征患者的抗炎作用,他们发现在高强度有氧运动组中,脂联素水平明显升高,而蛋白尿减少了。Navaneethan等 [42] 小型研究中,共有15名患有严重肥胖的2型糖尿病患者,其中9例接受了Rouxen-Y胃旁路术,其余患者接受其他类型的减肥手术。他们发现两组患者术后BMI均较低,但只有RYGB组的高分子量脂联素和尿白蛋白/肌酐呈负相关。这些结果说明对生活方式的干预可以提高脂联素的水平,减少蛋白尿,从而改善预后。

研究表明用血管紧张素转换酶抑制剂(angiotensin converting enzyme inhibitors, ACEI)或血管紧张素II受体拮抗剂(angiotensin II receptor blockers, ARB)能阻断肾素–血管紧张素–醛固酮系统(renin angiotensin aldosterone system, RAAS)可增加胰岛素的敏感性,其机制可能与RAAS阻滞剂诱导的脂联素升高有关 [43]。此外,RAAS阻断剂可能通过激活AMPK和环氧合酶-2途径来增加脂联素水平,改善肾脏的炎症反应 [44]。

噻唑烷二酮类药物(例如吡格列酮,罗格列酮)是PPARγ激动剂,可用于治疗2型糖尿病。其可通过增加脂联素基因表达,提高循环脂联素水平,特别是HMW脂联素水平,在延缓CKD的进展中也起重要作用,尽管噻唑烷二酮类药物的PPARγ激活有助于改善2型糖尿病肾病并发症,但其机制仍有待阐明 [45]。

利用提高脂联素活性的药物也可能成为预防糖尿病肾病患者蛋白尿进展的一个新突破。例如非诺贝特,一种PPARα激动剂,可通过PPARα激活和增加高密度脂蛋白,而提高脂肪组织中脂联素的水平。非诺贝特在不改善脂蛋白代谢和胰岛素敏感性的情况下减少全身炎症,并可能为糖尿病肾病患者提供一种新的治疗选择。而罗格列酮与非诺贝特具有相似的治疗作用。罗格列酮使糖尿病肾病患者的空腹血糖降低,提高脂联素水平以及加速葡萄糖的代谢,这提示噻唑烷二酮类药物也可以预防2型糖尿病肾病 [46]。

因此,进一步研究脂联素和脂联素的结构和功能,有助于了解脂联素作用的分子机制,并有助于设计新型的降糖药和延缓糖尿病肾病以及CKD进展的治疗药物。

6. 总结

脂联素与CKD发展及预后息息相关,脂联素水平的升高可能是一种有益的代偿机制,从而减少蛋白尿以及肾功能的损害。血清脂联素水平及尿脂联素水平也可能成为CKD患者疾病进展的有力预测因子,脂联素作为一种新的生物学标志物也会有良好的临床应用前景。但脂联素与CKD之间的相互作用是复杂的,且目前对于脂联素的研究结果依然存在争议,因此脂联素的具体作用机制尚待进一步的探索与研究。相信随着技术的发展,脂联素与CKD的关系会越来清楚,临床应用也会越来越广泛。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Palit, S.P., Patel, R., Jadeja, S.D., Rathwa, N., Mahajan, A., Ramachandran, A.V., Dhar, M.K., Sharma, S. and Begum, R. (2020) A Genetic Analysis Identifies a Haplotype at Adiponectin Locus: Association with Obesity and Type 2 Diabetes. Scientific Reports, 10, Article No. 2904.
[2] Niu, M.M., Xiang, L., Liu, Y.Q., Zhao, Y.Q., Yuan, J.F., Dai, X. and Chen, H. (2017) Adiponectin Induced AMPK Impairment Mediates Insulin Resistance in Bama Mini-Pig Fed High-Fat and High-Sucrose Diet. Asian Australasian Journal of Animal Sciences, 30, 1190-1197.
https://doi.org/10.1038/s41598-020-59845-z
[3] 陈佩娜, 吴小燕, 梁姗姗, 等. 维持性血液透析患者脂联素与左室肥厚的相关性[J]. 武汉大学学报(医学版), 2019, 40(1): 116-120.
[4] Zha, D.Q., Wu, X.Y. and Gao, P. (2017) Adiponectin and Its Receptors in Diabetic Kidney Disease: Molecular Mechanisms and Clinical Potential. Endocrinology, 158, 2022-2034.
https://doi.org/10.1210/en.2016-1765
[5] Goto, M., Goto, A., Morita, A., et al. (2014) Low-Molecular-Weight Adiponectin and High-Molecular-Weight Adiponectin Levels in Relation to Diabetes. Obesity, 22, 401-407.
https://doi.org/10.1002/oby.20553
[6] Kuo, I.C., Wu, P.H., Lin, H.Y.-H., Niu, S.-W., Huang, J.-C., Hung, C.-C., Chiu, Y.-W. and Chen, H.-C. (2019) The Association of Adiponectin with Metabolic Syndrome and Clinical Outcome in Patients with Non-Diabetic Chronic Kidney Disease. PLoS ONE, 14, e0220158.
https://doi.org/10.1371/journal.pone.0220158
[7] Rhee, C.M., Nguyen, D.V., Moradi, H., Brunelli, S.M., et al. (2015) Association of Adiponectin with Body Composition and Mortality in Hemodialysis Patients. American Journal of Kidney Diseases, 66, 313-321.
https://doi.org/10.1053/j.ajkd.2015.02.325
[8] Tsigalou, C., Chalikias, G., Kantartzi, K., et al. (2013) Differential Effect of Baseline Adiponectin on All-Cause Mortality in Hemodialysis Patients Depending on Initial Body Mass Index. Long-Term Follow-Up Data of 4.5 Years. Journal of Renal Nutrition, 23, 45-56.
https://doi.org/10.1053/j.jrn.2011.12.007
[9] Martinez Cantarin, M.P., Waldman, S.A., Doria, C., Frank, A.M., Maley, W.R., Ramirez, C.B., Keith, S.W. and Falkner, B. (2013) The Adipose Tissue Production of Adiponectin Is Increased in End-Stage Renal Disease. Kidney International, 83, 487-494.
https://doi.org/10.1038/ki.2012.421
[10] Ohashi, K., Iwatani, H., Kihara, S., Nakagawa, Y., Komura, N., Fujita, K., Maeda, N., Nishida, M., Katsube, F., Shimomura, I., Ito, T. and Funahashi, T. (2007) Exacerbation of Albuminuria and Renal Fibrosis in Subtotal Renal Ablation Model of Adiponectin-Knockout Mice. Arteriosclerosis Thrombosis and Vascular Biology, 27, 1910-1917.
https://doi.org/10.1161/ATVBAHA.107.147645
[11] Sharma, K., Ramachandrarao, S., Qiu, G., et al. (2008) Adiponectin Regulates Albuminuria and Podocyte Function in Mice. Journal of Clinical Investigation, 118, 1645-1656.
https://doi.org/10.1172/JCI32691
[12] Rutkowski, J.M., Wang, Z.V., Park, A.S.D., et al. (2013) Adiponectin Promotes Functional Recovery after Podocyte Ablation. Journal of the American Society of Nephrology, 24, 268-282.
https://doi.org/10.1681/ASN.2012040414
[13] Yu, Y., Bao, B.J., Fan, Y.P., et al. (2014) Changes of Adiponectin and Its Receptors in Rats Following Chronic Renal Failure. Renal Failure, 36, 92-97.
https://doi.org/10.3109/0886022X.2013.830975
[14] Christou, G.A. and Kiortsis, D.N. (2014) The Role of Adiponectin in Renal Physiology and Development of Albuminuria. Journal of Endocrinology, 221, R49-R61.
https://doi.org/10.1530/JOE-13-0578
[15] Kim, H.Y., Bae, E.H., Ma, S.K., Chae, D.W., Choi, K.H., Kim, Y.-S., Hwang, Y.-H., Ahn, C. and Kim, S.W. (2016) Association of Serum Adiponectin Level with Albuminuria in Chronic Kidney Disease Patients. Clinical and Experimental Nephrology, 20, 443-449.
https://doi.org/10.1007/s10157-015-1173-4
[16] Bulum, T., Vucic Lovrencic, M., Tomic, M., Vučković-Rebrina, S., Roso, V., Kolarić, B., Vuksan, V. and Duvnjak, L. (2019) Serum Adipocytokines Are Associated with Microalbuminuria in Patients with Type 1 Diabetes and Incipient Chronic Complications. Diabetes Metabolic Syndrome: Clinical Research Reviews, 13, 496-499.
https://doi.org/10.1016/j.dsx.2018.11.001
[17] Hashikawa-Hobara, N., Chan, Y.K. and Levi, R. (2012) Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart. Journal of Pharmacology and Experimental Therapeutics, 340, 185-191.
https://doi.org/10.1124/jpet.111.187765
[18] Hill, N.R., Fatoba, S.T., Oke, J.L., Hirst, J.A., O’Callaghan, C.A., Lasserson, D.S. and Richard Hobbs, F.D. (2016) Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE, 11, e0158765.
https://doi.org/10.1371/journal.pone.0158765
[19] El-Shafey, E.M. and Shalan, M. (2014) Plasma Adiponectin Levels for Prediction of Cardiovascular Risk among Hemodialysis Patients. Therapeutic Apheresis and Dialysis, 18, 185-192.
https://doi.org/10.1111/1744-9987.12065
[20] Iwashima, Y., Horio, T., Kumada, M., et al. (2006) Adiponectin and Renal Function, and Implication as A Risk of Cardiovascular Disease. American Journal of Cardiology, 98, 1603-1608.
https://doi.org/10.1016/j.amjcard.2006.07.039
[21] Becker, B., Kronenberg, F., Kielstein, J.T., Haller, H., Morath, C., Ritz, E., Fliser, D. and for the MMKD Study Group (2005) Renal Insulin Resistance Syndrome, Adiponectin and Cardiovascular Events in Patients with Kidney Disease: The Mild and Moderate Kidney Disease Study. Journal of the American Society of Nephrology, 16, 1091-1098.
https://doi.org/10.1681/ASN.2004090742
[22] Abdallah, E., Waked, E., Nabil, M., et al. (2012) Adiponectin and Cardiovascular Outcomes among Hemodialysis Patients. Kidney Blood Pressure Research, 35, 247-253.
https://doi.org/10.1159/000334649
[23] Menon, V., Li, L.J., Wang, X.L., Greene, T., et al. (2006) Adiponectin and Mortality in Patients with Chronic Kidney Disease. Journal of the American Society of Nephrology, 17, 2599-2606.
https://doi.org/10.1681/ASN.2006040331
[24] Von Eynatten, M., Liu, D., Hock, C., et al. (2009) Urinary Adiponectin Excretion: A Novel Marker for Vascular Damage in Type 2 Diabetes. Diabetes, 58, 2093-2099.
https://doi.org/10.2337/db09-0204
[25] Zhan, J.K., Wang, Y., He, J.Y., Wang, Y.-J., Tan, P., Tang, Z.-Y., Deng, H.-Q., Huang, W. and Liu, Y-S. (2015) Artery Calcification, Osteoporosis, and Plasma Adiponectin Levels Inchinese Elderly. Heart & Lung, 44, 539-543.
https://doi.org/10.1016/j.hrtlng.2015.08.006
[26] Sakura, T., Okuno, S., Nishio, E., Norimine, K., Ishimura, E., Yamakawa, T., Shoji, S. and Inaba, M. (2017) The Association of Serum Adiponectin with Abdominal Aortic Calcification in Japanese Male Hemodialysis Patients: A Cross-Sectional Observational Study. Scientific Reports, 7, Article No. 6434.
https://doi.org/10.1038/s41598-017-06850-4
[27] Hyun, Y.Y., Kim, H., Oh, Y.K., Oh, K.-H., Ahn, C., Sung, S.A., Choi, K.H., Kim, S.W. and Lee, K.-B. (2019) High Fibroblast Growth Factor 23 Is Associated with Coronary Calcification in Patients with High Adiponectin: Analysis from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease Study. Nephrology Dialysis Transplantation, 34, 123-129.
https://doi.org/10.1093/ndt/gfy110
[28] Lewerin, C., Johansson, H., Lerner, U.H., Karlsson, M.K., Lorentzon, M., Barrett-Connor, E., Smith, U., Ohlsson, C. and Mellström, D. (2015) High Serum Adiponectin Is Associated with Low Blood Haemoglobin in Elderly Men: The Swedish Mros Study. Journal of Internal Medicine, 278, 68-76.
https://doi.org/10.1111/joim.12340
[29] Kohno, K., Narimatsu, H, Shiono, Y, et al. (2014) Management of Erythropoiesis: Cross-Sectional Study of the Relationships between Erythropoiesis and Nutrition, Physical Features, and Adiponectin in 3519 Japanese People. European Journal of Haematology, 92, 298-307.
https://doi.org/10.1111/ejh.12250
[30] Kim, H., Yun, H.R., Park, S., et al. (2018) High Serum Adiponectin Is Associated with Anemia Development in Chronic Kidney Disease: The Results from the KNOW-CKD Study. Cytokine, 103, 1-9.
https://doi.org/10.1016/j.cyto.2017.12.018
[31] Cawthorn, W., Scheller, E., Learman, B., et al. (2014) Bone Marrow Adipose Tissue Is an Endocrine Organ That Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 20, 368-375.
https://doi.org/10.1016/j.cmet.2014.06.003
[32] Moorthi, R.N., Fadel, W., Eckert, G.J., Ponsler-Sipes, K., Moe, S. M. and Lin, C. (2015) Bone Marrow Fat Is Increased in Chronic Kidney Disease by Magnetic Resonance Spectroscopy. Osteoporosis International, 26, 1801-1807.
https://doi.org/10.1007/s00198-015-3064-7
[33] Hyun, Y.Y., Lee, K.B., Oh, K.H., et al. (2017) Serum Adiponectin and Protein-Energy Wasting in Predialysis Chronic Kidney Disease. Nutrition, 33, 254-260.
https://doi.org/10.1016/j.nut.2016.06.014
[34] Nagasu, H., Satoh, M., Kiyokage, E., et al. (2016) Activation of Endothelial NAD(P)H Oxidase Accelerates Early Glomerular Injury in Diabetic Mice. Laboratory Investigation, 96, 25-36.
https://doi.org/10.1038/labinvest.2015.128
[35] Hu, J., Dong, J., Yang, Z., Wu, H. and Yang, N. (2017) Protective Effects of Adiponectin against Diabetic Renal Injury in a Mouse Model of Diabetes. Cellular Physiology and Biochemistry, 43, 870-878.
https://doi.org/10.1159/000481612
[36] Kacso, I., Lenghel, A., Bondor, C.I., et al. (2012) Low Plasma Adiponectin Levels Predict Increased Urinary Albumin/Creatinine Ratio in Type 2 Diabetes Patients. International Urology and Nephrology , 44, 1151-1157.
https://doi.org/10.1007/s11255-011-0064-1
[37] Moreno, L.O., Salvemini, L., Mendonca, C., et al. (2015) Serum Adiponectin and Glomerular Filtration Rate in Patients with Type 2 Diabetes. PLoS ONE, 10, e0119529.
https://doi.org/10.1371/journal.pone.0119529
[38] Panduru, N.M., Saraheimo, M., Forsblom, C., et al. (2015) Urinary Adiponectin Is an Independent Predictor of Progression to End-Stage Renal Disease in Patients with Type 1 Diabetes and Diabetic Nephropathy. Diabetes Care, 38, 883-890.
https://doi.org/10.2337/dc14-2276
[39] Ha, K.H. and Kim, D.J. (2016) Urinary Adiponectin and Progression of Diabetic Nephropathy in Type 1 Diabetes. Journal of Diabetes Investigation, 7, 470-471.
https://doi.org/10.1111/jdi.12427
[40] Yamamoto, M., Fujimoto, Y., Hayashi, S., et al. (2018) A Study of High, Middle and Low Molecular Weight Adiponectin in Urine as A Surrogate Marker for Early Diabetic Nephropathy Using Ultrasensitive Immune Complex Transfer Enzyme Immunoassay. Annals of Clinical Biochemistry, 55, 525-534.
https://doi.org/10.1177/0004563217748681
[41] Balducci, S., Zanuso, S., Nicolucci, A., et al. (2010) Anti-Inflammatory Effect of Exercise Training in Subjects with Type 2 Diabetes and the Metabolic Syndrome Is Dependent on Exercise Modalities and Independent of Weight Loss.Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 20, 608-617.
https://doi.org/10.1016/j.numecd.2009.04.015
[42] Navaneethan, S.D., Kelly, K.R., Sabbagh, F., et al. (2010) Urinary Albumin Excretion, HMW Adiponectin, and Insulin Sensitivity in Type 2 Diabetic Patients Undergoing Bariatric Surgery. Obesity Surgery, 20, 308-315.
https://doi.org/10.1007/s11695-009-0026-1
[43] Yamauchi, T., Iwabu, M., Okada-Iwabu, M., et al. (2014) Adiponectin Receptors: A Review of Their Structure, Function and How They Work. Best Practice Research Clinical Endocrinology Metabolism, 28, 15-23.
https://doi.org/10.1016/j.beem.2013.09.003
[44] Rojas, E., Rodríguez-Molina, D., Bolli, P., et al. (2014) The Role of Adiponectin in Endothelial Dysfunction and Hypertension. Current Hypertension Reports, 16, Article No. 463.
https://doi.org/10.1007/s11906-014-0463-7
[45] Kakuda, H., Kobayashi, J., Sakurai, M., et al. (2019) Residual Effect of Sodium Glucose Cotransporter 2 Inhibitor, Tofogliflozin, on Body Weight after Washout in Japanese Men with Type 2 Diabetes. Journal of Clinical Medicine Research, 11, 35-41.
https://doi.org/10.14740/jocmr3650
[46] Tsunoda, F., Asztalos, I.B., Horvath, K.V., Steiner, G., Schaefer, E.J. and Asztalos, B.F. (2016) Fenofibrate, HDL, and Cardiovascular Disease in Type-2 Diabetes: The DAIS Trial. Atherosclerosis, 247, 35-39.
https://doi.org/10.1016/j.atherosclerosis.2016.01.028