组蛋白去乙酰化酶(HDACs)在胃癌中的研究进展
The Relationship between Histone Deacetylase (HDACs) and Gastric Cancer
DOI: 10.12677/ACM.2020.109320, PDF, HTML, XML, 下载: 685  浏览: 6,576 
作者: 徐 珊, 尹晓燕, 田字彬:青岛大学附属医院消化内科,山东 青岛
关键词: 胃癌组蛋白去乙酰化酶表观遗传Gastric Cancer Histone Deacetylase Epigenetic
摘要: 胃癌(gastric cancer, GC)是消化道常见肿瘤之一,早期诊断率低,多数患者出现临床症状就诊往往是GC发展的晚期,因此治疗效果不佳,转移风险高,预后差。近年国内外多个研究证实组蛋白去乙酰化酶(histone deacetylases, HDACs)在肿瘤进展中起着关键作用,通过改变组蛋白和非组蛋白的乙酰化来调控细胞周期、分化和凋亡,从而在肿瘤进展过程中破坏体内乙酰化动态平衡。GC的发生发展与HDACs表达失衡密切相关,然而它们在GC中的具体机制尚不清楚,本文主要对HDACs与GC的研究进行回顾和总结,以期为进一步研究提供参考,为临床治疗提供新作用靶点。
Abstract: Gastric cancer (GC) is one of the common malignant gastrointestinal tumors, with low early diagnosis rate. Most patients presenting clinical symptoms tend to be at the late stage of GC development, so this leads to a low cure rate, a high risk of metastasis, and a poor prognosis. In recent years, many researches in the domestic and foreign have confirmed that histone deacetylases (HDACs) play a critical role in tumor progression. HDACs regulate cell cycle, differentiation and apoptosis by changing the acetylation of histones and non-histones, thus disrupting the dynamic balance of acetylation in vivo during tumor progression. The occurrence and development of GC are closely related to the imbalance of HDACs expression. However, the specific role of HDACs in GC is still unclear. This article mainly reviews and summarizes the research on HDACs and GC, so as to provide reference for further research and provide a new target for clinical treatment.
文章引用:徐珊, 尹晓燕, 田字彬. 组蛋白去乙酰化酶(HDACs)在胃癌中的研究进展[J]. 临床医学进展, 2020, 10(9): 2127-2132. https://doi.org/10.12677/ACM.2020.109320

1. 引言

根据国际癌症研究机构提供的《2018年全球癌症负担的现状报告》,发现在三十多种常见癌症中,胃癌(Gastric Cancer, GC)已成为世界第五大最常见的癌症,同时也是导致癌症死亡的第三大原因 [1]。GC在亚洲的发病率显著高于欧美国家,在中国有安徽、福建、甘肃等13个省份由GC所致的寿命损失年数显著高于国家平均水平(380年/10万人口) [2],严重危害人类健康。近年来研究发现在GC中表观遗传改变普遍存在,表观遗传变化有多种机制,包括异常的DNA甲基化、组蛋白修饰、非编码RNA和RNA编辑等,越来越多研究证实组蛋白修饰与GC的发生发展密切相关 [3] [4],通过对组蛋白进行乙酰化、甲基化、磷酸化等修饰来调节GC细胞增殖、侵袭、转移、凋亡等生物学进程 [5],本文将着重关注组蛋白去乙酰化酶在GC中的研究进展。

2. 组蛋白去乙酰化和组蛋白去乙酰化酶

核小体是由双链DNA和组蛋白(H2A、H2B、H3和H4)八聚体组合而成的,是染色质的基本结构单位,其功能主要是参与调控基因表达,翻译后修饰通常发生在组蛋白核心区域以及在核心区域突出的N-端尾部,而染色质结构改变反过来又参与了基因表达 [6]。组蛋白乙酰化是机体维持细胞稳态的一个可逆且重要的动态平衡过程,其中组蛋白乙酰转移酶(Histone Acetyitransferases, HATs)和组蛋白去乙酰化酶(Histone Deacetylase, HDACs)是维持该平衡的两种关键酶。组蛋白乙酰化是HATs中和了带正电的组蛋白赖氨酸残基,导致染色质构象松弛,激活特定的基因转录。相反,HDAC可以从组蛋白赖氨酸残基中去除乙酰基,染色质构象浓缩,导致基因转录抑制 [7] [8]。因此,乙酰化与基因激活有关,去乙酰化则意味着基因沉默。通常认为HDACs活性异常造成抑癌基因的转录抑制是导致肿瘤形成的重要表观遗传机制之一 [9],HDACs作为肿瘤新的治疗靶点被广泛研究,有巨大的潜在临床应用价值。

HDACs在人类酵母中高度保守,目前已有18个HDACs被发现,根据其结构、功能、亚细胞定位以及与酵母HDACs的同源性进行分类,将HDACs从I到IV分为四类:(1) I类,与酵母Rpd3同源,存在细胞核中,包括HDAC1、2、3和8;(2) II类,与酵母Hda1同源,定位于细胞质和细胞核中,分别为IIa类(包括HDAC4、5、7和9)和IIb类(包括HDAC6和10)两个亚型;(3) III类,与酵母Sir2同源,通常被称为沉默信息调节因子(silent information regulators, SIRTs),在细胞质、细胞核和线粒体均有存在,是维持染色质所必需的物质,称为Sirtuins家族,有SIRT1~SIRT7七个成员;(4) IV类,目前仅由HDAC11组成 [10] [11]。

3. 组蛋白去乙酰化酶与胃癌

目前已在包括GC多种肿瘤中发现HDACs表达异常,其中I、II类HDACs与胃癌的研究最为多见,同时也更加广泛关注组蛋白去乙酰化酶靶向抑制在治疗胃癌上的应用。不同种类的HDACs在功能上不全相同,例如,HDAC4,SIRT2等起促癌作用,但HDAC3,SIRT1等能却抑制GC。I类HDACs在组织广泛表达,主要是参与调控组蛋白乙酰化、调节染色体结构。II类HDACs具有组织特异性,它们在胞质和胞核之间来往,传递信息,通过催化体内组蛋白和非组蛋白去乙酰化来调控基因的转录 [12]。SIRTs家族成员可调节细胞衰老、DNA修复和细胞周期。接下来,我们将关注不同种HDACs在GC中的作用。分别从不同HDACs在GC发生、发展中的意义,作用机制及作为靶点治疗的研究加以阐述。

4. HDACs在胃癌中的表达

早在2007年,Nakagawa等 [13] 就证实I类HDACs (HDAC1、2、3、8)在GC组织均有高表达,近年多个研究证实,HDAC1/2在GC中过表达,可能在GC中起重要作用 [14],HDAC1可作为化疗敏感性患者的潜在危险分层因素之一 [15]。Jiang等 [16] 阐明HDAC1表达量与肿瘤的大小、T分期、淋巴结转移相关,分析提示HDAC1表达是患者生存的独立预后因素。Xu等 [17] 在GC细胞系/组织中发现HDAC3表达上调,沉默HDAC3的表达,降低了GC细胞活力,减少了克隆形成数量,降低了肿瘤重量,还证实HDAC3通过mir-454介导的靶向CHD5与GC细胞生长相关。Wang等 [18] 阐明HDAC8在AGS、GC9811细胞系和GC组织中的表达明显增加(P < 0.0001),HDAC8表达与GC患者的临床结局呈负相关(HR = 2.245 [1.685 − 2.805], P < 0.0001),沉默HDAC8表达抑制了细胞周期的进展,这表明HDAC8可能在GC的发展中起致癌基因的作用。

Li等 [19] 指出在GC组织中SIRT2表达上调,且与患者生存期降低有关,通过小鼠体外致瘤实验发现抑制SIRT2可在体内减弱GC的肿瘤转移。Sun等 [20] 发现在GC组织和细胞中,SIRT4的表达下调,且SIRT4低表达与肿瘤大小、病理分级、淋巴结转移呈负相关,预后较差,同时发现SIRT4调节上皮–间质转化,从而调节细胞迁移和侵袭。Zhou等 [21] 报道SIRT6在GC组织和细胞系中表达量下降。SIRT6表达降低与肿瘤分化、肿瘤大小和TNM分期等临床因素相关,且SIRT6的表达水平与患者的总生存率密切相关。

从以上研究可以看出,不同HDACs在GC中表达并不完全一致,其中关于HDAC11的功能作用知之甚少,亟待更多研究去探索发掘。HDACs表达的异常又与肿瘤病理分级、患者预后等密切相关,所以是否检测胃组织中HDACs的含量来筛查GC高危人群,也是一个值得研究探索的方向。

5. HDACs在胃癌进展中的作用

Jiang等 [22] 指出敲低HDAC1可通过调节miRNA-34a/CD44通路来抑制GC细胞的转移能力。也有研究指出HDAC1可通过促进糖酵解和改变缺氧诱导因子-1α (hypoxia-inducing factor, HIF-1α)活性来促进GC的进展和转移 [16]。

Kim等 [23] 敲除GC细胞中HDAC2基因,发现G1/S细胞周期阻滞,激活p16 (INK4a)和促凋亡因子的活性,引起了Rb蛋白的PARP切割和低磷酸化,抑制了cyclinD1、CDK4和Bcl-2的表达,诱导了LC3B-II转化的自噬表型,导致细胞凋亡。HDAC3可通过阻断p53与DTWD1启动子的相互作用来下调DTWD1,从而下调细胞周期蛋白B1的表达来抑制增殖,从而起到抑癌作用 [24]。Spaety等 [25] 阐述p53/TAp73-miR140-HDAC4-BIK调控环可能在GC治疗反应中发挥关键作用。Park等 [26] 发现HDAC6通过抑制表皮生长因子受体(EGFR)降解,增加EGFR信号,从而促进GC生长发展。Dong等 [27] 证实了SIRT1可通过与转录因子c-JUN的相互作用下调靶基因ARHGAP5的表达来抑制GC的迁移和侵袭。基质金属蛋白酶(matrix metalloproteinase, MMP)选择性地消化细胞外基质的能力,所以在肿瘤转移过程中至关重要。而沉默SIRT1可通过上调磷酸化的信号转导与转录激活子3 (signal transducer and activator of transcription 3, STAT3) (pSTAT3)和乙酰化的STAT3,激活MMP-13来促进GC细胞的增殖和转移,提示SIRT1可能具有抑癌作用 [28]。Li等 [19] 也阐明SIRT2可通过激活RAS/ERK/JNK/MMP-9通路,增加代谢蛋白PEPCK1蛋白水平和线粒体活性来促进GC的迁移和侵袭。提示SIRT2在GC中可能具有致癌作用。

Fernández-Coto等 [27] 观察到在GC的发展过程中保护线粒体功能的两个主要调节因子(SIRT3和SIRT5)逐渐丧失。两种SIRTS的下调均始于肠上皮化生,在GC中表现更为明显特别是,当活性氧(ROS)水平增加时,SIRT3负调控HIF-1α回稳,SIRT3通过去乙酰化和激活线粒体酶来抑制ROS的产生,可以避免过度的ROS堆积,从而防止细胞死亡。SIRT3的逐渐丧失与HIF1A的已知靶基因己糖激酶-3 (HK3)水平的升高相关,而HK3过表达能快速产生能量和积累糖酵解中间体,这些最终会导致细胞快速分裂。

Hu等 [29] 指出STRT4可通过对细胞基质中信号调节激酶细胞周期蛋白D和细胞周期蛋白E的磷酸化阻滞细胞G1期,说明SIRT4在GC中具有抑癌作用。Lu等 [30] 证实SIRT5对2-氧戊二酸脱氢酶(OGDH)的去核苷化抑制了OGDH复合物的活性,从而干扰线粒体功能和氧化还原状态,抑制GC细胞的生长和迁移。Zhou等 [21] 报道SIRT6可以阻断JAK2/STAT3的活化,抑制JAK2/STAT3通路下游靶点细胞周期蛋白D1 (cyclin D1)和Bcl2的表达,从而来抑制GC的生长。

各类HDACs对GC的作用通路构成了庞大的基因调控谱,通过对基因的人为干预,产生促进或抑制作用,从而可以为治疗GC提供新的治疗靶点。

6. HDACs与靶点治疗

余亮等 [31] 在国内外首次发现岩藻多糖的功能机制,可通过抑制HDAC1表达,下调Bcl-2,上调Bax来促进GC细胞凋亡。Colarossi等 [32] 首次证实了HDAC4及其两种调节因子PP2A和磷酸化的极光激酶在GC组织细胞中显著升高,抑制HDAC4与多西紫杉醇治疗GC有协同作用,HDAC4/多西紫杉醇联合治疗可显著增加组蛋白H3 (Lys9/Lys14)的乙酰化和细胞凋亡指标(活化的caspase 3 Asp175,活化的caspase 9 Asp315),增加细胞毒性。

相对于广泛HDACs抑制剂在GC中的复杂作用,特异性HDACs抑制剂具有不良反应小和抗瘤作用强的优点,HDACs特异分子靶向治疗以及优化联合用药策略为GC的诊疗带来无限新希望,具有重大的临床意义,但相关药物的开发还需要大量研究检验,同时也需基础研究为之探路。

7. 结语与展望

表观遗传由于其可逆性的特点,为临床上治疗肿瘤等疾病提供了一个新思路,不同HDACs对GC的作用仍需要进一步的探索,这有助于特异性HDACs靶点在精准医疗领域的应用。特异性HDACs抑制剂是一种潜在的新型抗肿瘤药物,具有重要的临床应用价值,目前了解HDACs与GC关系密切,但特异性HDACs抑制剂对GC的作用尚处于探索阶段,亟待更多的研究和临床试验。相信在不久的将来,HDACs会成为治疗胃癌的新型作用靶点,提高胃癌治疗的有效率。

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., Li, X., Wang, L., Wang, L., Liu, Y., Liu, J., Zhang, M., Qi, J., Yu, S., Afshin, A., Gakidou, E., Glenn, S., Krish, V.S., Miller-Petrie, M.K., Mountjoy-Venning, W.C., Mullany, E.C, Redford S.B., Liu, H., Naghavi, M., Hay, S.I., Wang, L., Murray, C.J.L. and Liang, X. (2019) Mortality, Morbidity, and Risk Factors in China and Its Provinces, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 394, 1145-1158.
https://doi.org/10.1016/S0140-6736(19)30427-1
[3] Yang, W.Y., Gu, J.L. and Zhen, T.M. (2014) Recent Advances of Histone Modification in Gastric Cancer. Journal of Cancer Research and Therapeutics, 10, 240-245.
https://doi.org/10.4103/0973-1482.151450
[4] Padmanabhan, N., Ushijima, T. and Tan, P. (2017) How to Stomach an Epigenetic Insult: The Gastric Cancer Epigenome. Nature Reviews Gastroenterology & Hepatology, 14, 467-478.
https://doi.org/10.1038/nrgastro.2017.53
[5] Wang, G.G., Allis, C.D. and Chi, P. (2007) Chromatin Remodeling and Cancer, Part I: Covalent Histone Modifications. Trends in Molecular Medicine, 13, 363-372.
https://doi.org/10.1016/j.molmed.2007.07.003
[6] Fuchs, J., Demidov, D., Houben, A. and Schubert, I. (2006) Chromosomal Histone Modification Patterns--From Conservation to Diversity. Trends in Plant Science, 11, 199-208.
https://doi.org/10.1016/j.tplants.2006.02.008
[7] De Ruijter, A.J., Van Gennip, A.H., Caron, H.N., Kemp, S. and Van Kuilenburg, A.B. (2003), Histone Deacetylases (HDACs): Characterization of the Classical HDAC Family. The Biochemical Journal, 370, 737-749.
https://doi.org/10.1042/bj20021321
[8] Shah, P., Gau, Y. and Sabnis, G. (2014) Histone Deacetylase Inhibitor Entinostat Reverses Epithelial to Mesenchymal Transition of Breast Cancer Cells by Reversing the Repression of E-Cadherin. Breast Cancer Research and Treatment, 143, 99-111.
https://doi.org/10.1007/s10549-013-2784-7
[9] Shi, J., Qu, Y.P. and Hou, P. (2014) Pathogenetic Mechanisms in Gastric Cancer. World Journal of Gastroenterology, 20, 13804-13819.
https://doi.org/10.3748/wjg.v20.i38.13804
[10] Smith, B.C. and Denu, J.M. (2009) Chemical Mechanisms of Histone Lysine and Arginine Modifications. Biochimica et Biophysica Acta, 1789, 45-57.
https://doi.org/10.1016/j.bbagrm.2008.06.005
[11] Hassell, K.N. (2019) Histone Deacetylases and Their Inhibitors in Cancer Epigenetics. Diseases, 7, 57.
https://doi.org/10.3390/diseases7040057
[12] Yang, X.J. and Seto, E. (2008) The Rpd3/Hda1 Family of Lysine Deacetylases: From Bacteria and Yeast to Mice and Men. Nature Reviews Molecular Cell Biology, 9, 206-218.
https://doi.org/10.1038/nrm2346
[13] Nakagawa, M., Oda, Y., Eguchi, T., Aishima, S., Yao, T., Hosoi, F., Basaki, Y., Ono, M., Kuwano, M., Tanaka, M. and Tsuneyoshi, M. (2007) Expression Profile of Class I Histone Deacetylases in Human Cancer Tissues. Oncology Reports, 18, 769-774.
https://doi.org/10.3892/or.18.4.769
[14] Mutze, K., Langer, R., Becker, K., Ott, K., Novotny, A., Luber, B., Hapfelmeier, A., Göttlicher, M., Höfler, H. and Keller, G. (2010) Histone Deacetylase (HDAC) 1 and 2 Expression and Chemotherapy in Gastric Cancer. Annals of Surgical Oncology, 17, 3336-3343.
https://doi.org/10.1245/s10434-010-1182-1
[15] Orenay-Boyacioglu, S., Kasap, E., Gerceker, E., Yuceyar, H., Demirci, U., Bilgic, F. and Korkmaz, M. (2018) Expression Profiles of Histone Modification Genes in Gastric Cancer Progression. Molecular Biology Reports, 45, 2275-2282.
https://doi.org/10.1007/s11033-018-4389-z
[16] Jiang, Z.H., Yang, H.M., Zhang, X.Y., Wang, Z.D., Rong, R. and Wang, X.H. (2019) Histone Deacetylase-1 as a Prognostic Factor and Mediator of Gastric Cancer Progression by Enhancing Glycolysis. Human Pathology, 85, 194-201.
https://doi.org/10.1016/j.humpath.2018.10.031
[17] Xu, G.R., Zhu, H.X., Zhang, M.H. and Xu, J.H. (2018) Histone Deacetylase 3 Is Associated With Gastric Cancer Cell Growth Via the Mir-454-Mediated Targeting of CHD5. International Journal of Molecular Medicine, 41, 155-163.
https://doi.org/10.3892/ijmm.2017.3225
[18] Wang, Y., Xu, P., Yao, J., Yang, R.N., Shi, Z.G., Zhu, X.J., Feng, X.S. and Gao, S.G. (2016) Microrna-216b Is Down-Regulated in Human Gastric Adenocarcinoma and Inhibits Proliferation and Cell Cycle Progression by Targeting Oncogene HDAC8. Targeted Oncology, 11, 197-207.
https://doi.org/10.1007/s11523-015-0390-9
[19] Li, Y., Zhang, M.M., Dorfman, R.G., Pan, Y., Tang, D.H., Xu, L., Zhao, Z.G., Zhou, Q., Zhou, L.X., Wang, Y.M., Yin, Y.Y., Shen, S.S., Kong, B., Friess, H., Zhao, S.M., Wang, L. and Zou, X.P. (2018) SIRT2 Promotes the Migration and Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by Increasing PEPCK1-Related Metabolism. Neoplasia (New York, N.Y.), 20, 745-756.
https://doi.org/10.1016/j.neo.2018.03.008
[20] Sun, H., Huang, D., Liu, G., Jian, F., Zhu, J. and Zhang, L. (2018) SIRT4 Acts as a Tumor Suppressor in Gastric Cancer by Inhibiting Cell Proliferation, Migration, and Invasion. Oncotargets and Therapy, 11, 3959-3968.
https://doi.org/10.2147/OTT.S156143
[21] Zhou, J.M., Wu, A., Yu, X.T., Zhu, J.M. and Dai, H. (2017) SIRT6 Inhibits Growth of Gastric Cancer by Inhibiting JAK2/STAT3 Pathway. Oncology Reports, 38, 1059-1066.
https://doi.org/10.3892/or.2017.5753
[22] Lin, L.L., Jiang, H.P., Huang, M.K., Hou, X., Sun, X.P., Jiang, X., Dong, X.S., Sun, X.Y.., Zhou, B.G. and Qiao, H.Q. (2015) Depletion of Histone Deacetylase 1 Inhibits Metastatic Abilities of Gastric Cancer Cells by Regulating the Mir-34a/CD44 Pathway. Oncology Reports, 34, 663-672.
https://doi.org/10.3892/or.2015.4010
[23] Kim, J.K., Noh, J.H., Eun, J.W., Jung, K.H., Bae, H.J., Shen, Q., Kim, M.G., Chang, Y.G., Kim, S.J., Park, W.S., Lee, J.Y., Borlak, J. and Nam, S.W. (2013) Targeted Inactivation of HDAC2 Restores P16ink4a Activity and Exerts Antitumor Effects on Human Gastric Cancer. Molecular Cancer Research, 11, 62-73.
https://doi.org/10.1158/1541-7786.MCR-12-0332
[24] Ma, Y.M., Yue, Y.F., Pan, M., Sun, J., Chu, J., Lin, X.Y., Xu, W.X., Feng, L.F., Chen, Y., Chen, D.W., Shin, V.Y., Wang, X. and Jin, H.C. (2015) Histone Deacetylase 3 Inhibits New Tumor Suppressor Gene DTWD1 in Gastric Cancer. American Journal of Cancer Research, 5, 663-673.
[25] Spaety, M.E., Gries, A., Badie, A., Venkatasamy, A., Romain, B., Orvain, C., Yanagihara, K., Okamoto, K., Jung, A.C., Mellitzer, G., Pfeffer, S. and Gaiddon, C. (2019) HDAC4 Levels Control Sensibility Toward Cisplatin in Gastric Cancer Via the P53-P73/BIK Pathway. Cancers, 11, 1747.
https://doi.org/10.3390/cancers11111747
[26] Park, S.J., Kim, J.K., Bae, H.J., Eun, J.W., Shen, Q., Kim, H.S., Shin, W.C., Yang, H.D., Lee, E.K., You, J.S., Park, W.S., Lee, J.Y. and Nam, S.W. (2014) HDAC6 Sustains Growth Stimulation by Prolonging the Activation of EGF Receptor through the Inhibition of Rabaptin-5-Mediated Early Endosome Fusion in Gastric Cancer. Cancer Letters, 354, 97-106.
https://doi.org/10.1016/j.canlet.2014.07.041
[27] Fernández-Coto, D.L., Gil, J., Hernández, A., Herrera-Goepfert, R., Castro-Romero, I., Hernández-Márquez, E., Arenas-Linares, A.S., Calderon-Sosa, V.T., Sanchez-Aleman, M.Á., Mendez-Tenorio, A., Encarnación-Guevara, S. and Ayala, G. (2018) Quantitative Proteomics Reveals Proteins Involved in the Progression from Non-Cancerous Lesions to Gastric Cancer. Journal of Proteomics, 186, 15-27.
https://doi.org/10.1016/j.jprot.2018.07.013
[28] Zhang, S., Yang, Y, Huang, S.L., Deng, C., Zhou, S.Q., Yang, J., Cao, Y., Xu, L., Yuan, Y., Yang, J., Chen, G.X., Zhou, L., Lv, Y., Wang, L. and Zou, X.P. (2019) SIRT1 Inhibits Gastric Cancer Proliferation and Metastasis Via STAT3/MMP-13 Signaling. Journal of Cellular Physiology, 234, 15395-15406.
https://doi.org/10.1002/jcp.28186
[29] Hu, Y.W., Lin, J.H., Lin, Y., Chen, X.X., Zhu, G.B. and Huang, G.Y. (2019) Overexpression of SIRT4 Inhibits the Proliferation of Gastric Cancer Cells through Cell Cycle Arrest. Oncology Letters, 17, 2171-2176.
https://doi.org/10.3892/ol.2018.9877
[30] Lu, X., Yang, P.F., Zhao, X.R., Jiang, M.Z., Hu, S.J., Ouyang, Y.N., Zeng, L. and Wu, J. (2019) OGDH Mediates the Inhibition of SIRT5 on Cell Proliferation and Migration of Gastric Cancer. Experimental Cell Research, 382, Article ID: 111483.
https://doi.org/10.1016/j.yexcr.2019.06.028
[31] 余亮, 江惠丽, 刘豪杰, 和韩玮. 褐藻多糖硫酸酯通过调控HDAC1基因的表达促进胃癌细胞凋亡[J]. 中国病理生理杂志, 2019, 35(6): 1075-1080.
[32] Colarossi, L., Memeo, L., Colarossi, C., Aiello, E., Iuppa, A., Espina, V., Liotta, L. and Mueller, C. (2014) Inhibition of Histone Deacetylase 4 Increases Cytotoxicity of Docetaxel in Gastric Cancer Cells. Proteomics—Clinical Applications, 8, 924-931.
https://doi.org/10.1002/prca.201400058