日照市付疃河流域地下水资源均衡法计算及其水位情势预测仿真研究
Calculation of Groundwater Resources Equilibrium Method and Simulation of Water Level Regime Prediction in Futuan River Basin of Rizhao City
DOI: 10.12677/AG.2020.109085, PDF, 下载: 433  浏览: 539 
作者: 朱伟:山东省第八地质矿产勘查院,山东 日照
关键词: 地下水资源均衡法日照市付疃河流域GMSGroundwater Resources Equilibrium Method Futuan River Basin of Rizhao City GMS
摘要: 为实现日照市付疃河流域地下水资源合理开发及持续利用,本文在采用均衡法计算傅疃河流域地下水资源量的基础上,运用GMS软件模拟预测3种开采方案下地下水资源水位变化情势。均衡法计算结果显示:综合考虑地下水补给量、排泄量后付疃河流域地下水资源总补给量(277,740.7 m3/d)≈总排泄量(260,893.29 m3/d),其出孔隙水的开采潜力指数为1.04及裂隙水的开采潜力指数为1.18,即该区域地下水资源总体处于采补平衡状态,全区地下水自然循环基本保持较好的态势。进而在此基础上,通过GMS (Groundwater Modeling System)软件模拟:(1) 现状开采条件下1年、5年、10年、20年后的地下水位;(2) 飞机场水场和河套水厂开采地下水后1年、5年、10年、20年后的地下水位;(3) 崮河汇入傅疃河处设置拦河坝后运行1年、5年、10年、20年的地下水位变化情势。模拟结果显示三种方案下,该区域地下水资源总补给量大于总排泄量。这为该区地下水资源的合理开发和利用提供量化的数据支持,具有重要的实践应用价值。
Abstract: In order to realize the reasonable development and sustainable utilization of groundwater re-sources in Futuan River Basin of Rizhao City, GMS software is used to simulate the groundwater level changes under three mining schemes based on the calculation of groundwater resources in Futuan River Basin by using equilibrium method. The results of equilibrium method show that the total recharge of groundwater resources (277,740.7 m3/d) is approximately equal to the total discharge (260,893.29 m3/d) after considering the groundwater recharge and discharge. The exploitation potential index of pore water and fissure water is 1.04 and 1.18 respectively, which means that the groundwater resources in this area are in the balance state of exploitation and supplement, and the natural circulation of groundwater in the whole area basically keeps a good situation. On this basis, the GMS software is used to simulate: (1) The groundwater level under the current mining conditions after 1 year, 5 years, 10 years and 20 years; (2) The groundwater level after 1 year, 5 years, 10 years and 20 years after the airport water field and Hetao water plant exploit the groundwater; (3) The groundwater level changes under the conditions of 1 year, 5 years, 10 years and 20 years after the dam is set at the place where the Gu river flows into the Futun river. The simulation results show that the total recharge of groundwater resources is greater than the total discharge under the three schemes. It provides quantitative data support for the rational development and utilization of groundwater resources in this area, and has important practical application value.
文章引用:朱伟. 日照市付疃河流域地下水资源均衡法计算及其水位情势预测仿真研究[J]. 地球科学前沿, 2020, 10(9): 869-878. https://doi.org/10.12677/AG.2020.109085

参考文献

[1] Hasan, M.S.U. and Rai, A.K. (2020) Groundwater Quality Assessment in the Lower Ganga Basin Using Entropy Information Theory and GIS. Journal of Cleaner Production, 274, Article ID: 123077.
https://doi.org/10.1016/j.jclepro.2020.123077
[2] Samah, N.A., Rosli, N.A.M., Manap, A., Hu, A., Aziz, Y.F.A. and Yusoff, M.M. (2020) Synthesis & Characterization of Ion Imprinted Polymer for Arsenic Removal from Water: A Value Addition to the Groundwater Resources. Chemical Engineering Journal, 394, Article ID: 124900.
https://doi.org/10.1016/j.cej.2020.124900
[3] 何开录. 基于Arcgis三维可视化的铁路地下水资源特性研究[J]. 环境科学与管理, 2020, 45(7): 88-92.
[4] Pereira, L.S., Paredes, P. and Jovanovic, N. (2020) Soil Water Balance Models for Determining Crop Water and Irrigation Requirements and Irrigation Scheduling Focusing on the FAO56 Method and the Dual Kc Approach. Agricultural Water Management, 241, Article ID: 106357.
https://doi.org/10.1016/j.agwat.2020.106357
[5] 任永泰, 李丽. 哈尔滨市水资源预警模型研究(Ⅰ)——基于时差相关分析法的区域水资源预警指标体系构建[J]. 东北农业大学学报, 2011, 42(8): 136-141.
[6] 张长文, 张文平. 蒙古国塔木察格水源地地下水资源评价[J]. 科技创新与应用, 2019(10): 59-60.
[7] 梁洪. 四川巴中恩阳区红层丘陵地下水特征及水资源评价[D]: [硕士学位论文]. 成都: 成都理工大学, 2016.
[8] 余乐时. 河套灌区井渠结合地下水数值模拟及水资源预测分析[D]: [硕士学位论文]. 武汉: 武汉大学, 2017.
[9] 赖乔枫, 肖长来, 梁秀娟, 戚琳琳, 鲁华. 大安市地下水时空动态变化分析及预测[J]. 水利水电技术, 2018, 49(10): 14-20.
[10] 张冰, 尹玲, 马妍. 日照市付疃河流域鸟类调查及其生态环境研究[J]. 农技服务, 2017, 34(2): 11+5.
[11] Zhao, L., Jiang, H.Q., Wang, H., Yang, H.X., Sun, F.R. and Li, J.J. (2020) Representation of a New Physics-Based non-Darcy Equation for Low-Velocity Flow in Tight Reservoirs. Journal of Petroleum Science and Engineering, 184, Article ID: 106518.
https://doi.org/10.1016/j.petrol.2019.106518
[12] 张海林, 吴立进, 罗斐, 张翼飞. 青岛市主要水源地地下水资源潜力评价方法研究[J]. 能源技术与管理, 2017, 42(2): 159-161.
[13] 王英刚, 李小川, 孙宏亮, 陈晓博, 马溶涵, 高丹. 基于GMS的某金属尾矿库地下水溶质运移模拟[J]. 沈阳大学学报(自然科学版), 2018, 30(2): 87-92+173.
[14] 张书金, 黎林, 姚树标. 3GSM系统在金属矿山岩体结构面测量中的应用[J]. 采矿技术, 2020, 20(4): 142-145.
[15] Shi, L.Q., Wang, Y., Qiu, M. and Wang, M. (2019) Assessment of Water Inrush Risk Based on the Groundwater Modeling System—A Case Study in the Jiaojia Gold Mine Area, China. Arabian Journal of Geosciences, 12, Article No. 807.
https://doi.org/10.1007/s12517-019-4986-8