|
[1]
|
Dichgans, M. and Leys, D. (2017) Vascular Cognitive Impairment. Circulation Research, 120, 573-591. [Google Scholar] [CrossRef]
|
|
[2]
|
Smith, E.E. (2017) Clinical Presentations and Epidemiology of Vascular Dementia. Clinical Science (London), 131, 1059-1068. [Google Scholar] [CrossRef]
|
|
[3]
|
Gorelick, P.B., Scuteri, A., Black, S.E., Decarli, C., Greenberg, S.M., Iadecola, C., Launer, L.J., Laurent, S., Lopez, O.L., Nyenhuis, D., et al. (2011) Vascular Contributions to Cognitive Impairment and Dementia: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 42, 2672-2713. [Google Scholar] [CrossRef]
|
|
[4]
|
Iadecola, C., Yaffe, K., Biller, J., Faraci, F.M., Gorelick, P.B., Gulati, M., Kamel, H., Knopman, D.S., Launer, L.J., Saczynski, J.S., et al. (2016) Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension, 68, e67-e94. [Google Scholar] [CrossRef]
|
|
[5]
|
Bakker, F.C., Klijn, C.J.M., Jennekens-Schinkel, A. and Kappelle, L.J. (2000) Cognitive Disorders in Patients with Occlusive Disease of the Carotid Artery: A Systematic Review of the Literature. Journal of Neurology, 247, 669-676. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ishikawa, M., Saito, H., Yamaguro, T., Ikoda, M., Ebihara, A., Kusaka, G. and Tanaka, Y. (2016) Cognitive Impairment and Neurovascular Function in Patients with Severe Steno-Occlusive Disease of a Main Cerebral Artery. Journal of the Neurological Sciences, 361, 43-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Demarin, V., Zavoreo, I. and Basic Kes, V. (2012) Carotid Artery Disease and Cognitive Impairment. Journal of Neurological Sciences, 322, 107-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mijajlović, M.D., Pavlović, A., Brainin, M., Heiss, W.D., Quinn, T.J., Ihle-Hansen, H.B., Hermann, D.M., Assayag, E.B., Richard, E., Thiel, A., et al. (2017) Post-Stroke Dementia—A Comprehensive Review. BMC Medicine, 15, Article No.: 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Back, D.B., Kwon, K.J., Choi, D.H., Shin, C.Y., Lee, J., Han, S.H. and Kim, H.Y. (2017) Chronic Cerebral Hypoperfusion Induces Post-Stroke Dementia Following Acute Ischemic Stroke in Rats. Journal of Neuroinflammation, 14, Article No.: 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Schaapsmeerders, P., Tuladhar, A.M., Arntz, R.M., Franssen, S., Maaijwee, N.A., Rutten-Jacobs, L.C., Schoonderwaldt, H.C., Dorresteijn, L.D., van Dijk, E.J., Kessels, R.P., et al. (2016) Remote Lower White Matter Integrity Increases the Risk of Long-Term Cognitive Impairment after Ischemic Stroke in Young Adults. Stroke, 47, 2517-2525. [Google Scholar] [CrossRef]
|
|
[11]
|
Moretti, D.V., Pievani, M. and Pini, L. (2017) Cerebral PET Glucose Hypometabolism in Subjects with Mild Cognitive Impairment and Higher EEG High-Alpha/Low-Alpha Frequency Power Ratio. Neurobiology of Aging, 58, 213-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ishikawa, M., Kusaka, G., Terao, S., Nagai, M., Tanaka, Y. and Naritaka, H. (2017) Improvement of Neurovascular Function and Cognitive Impairment after STA-MCA Anastomosis. Journal of Neurological Sciences, 373, 201-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bor-Seng-Shu, E., Kita, W.S., Figueiredo, E.G., Paiva, W.S., Fonoff, E.T., Teixeira, M.J., et al. (2012) Cerebral Hemodynamics: Concepts of Clinical Importance. Arquivos de Neuro-Psiquiatria, 70, 357-365. [Google Scholar] [CrossRef]
|
|
[14]
|
De la Torre, J.C. (2006) Critically Attained Threshold of Cerebral Hypoperfusion: Can It Cause Alzheimer’s Disease? Ann N Y Acad Sci, 903, 424-436.
|
|
[15]
|
Cechetti, F., Pagnussat, A.S., Worm, P.V., Elsner, V.R., Ben, J., da Costa, M.S., et al. (2012) Chronic Brain Hypoperfusion Causes Early Glial Activation and Neuronal Death, and Subsequent Long-Term Memory Impairment. Brain Research Bulletin, 87, 109-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yew, B. and Nation, D.A. (2017) Cerebrovascular Resistance: Effects on Cognitive Decline, Cortical Atrophy, and Progression to Dementia. Brain, 140, 1987-2001. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Marshall, R.S., Festa, J.R., Cheung, Y.K., Chen, R., Pavol, M.A., Derdeyn, C.P., et al. (2012) Cerebral Hemodynamics and Cognitive Impairment. Neurology, 78, 250-255. [Google Scholar] [CrossRef]
|
|
[18]
|
Haratz, S., Weinstein, G., Molshazki, N., Beeri, M.S., Ravona-Springer, R., Marzeliak, O., et al. (2015) Impaired Cerebral Hemodynamics and Cognitive Performance in Patients with Atherothrombotic Disease. Journal of Alzheimer’s Disease, 46, 137-144. [Google Scholar] [CrossRef]
|
|
[19]
|
Farkas, E. and Luiten, P.G.M. (2001) Cerebral Microvascular Pathology in Aging and Alzheimer’s Disease. Progress in Neurobiology, 64, 575-611. [Google Scholar] [CrossRef]
|
|
[20]
|
Ruitenberg, A., den Heijer, T., Bakker, S.L., van Swieten, J.C., Koudstaal, P.J., Hofman, A., et al. (2005) Cerebral Hypoperfusion and Clinical Onset of Dementia: The Rotterdam Study. Annals of Neurology, 57, 789-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Antonopoulos, C.N., Kakisis, J.D., Sfyroeras, G.S., Moulakakis, K.G., Kallinis, A., Giannakopoulos, T., et al. (2015) The Impact of Carotid Artery Stenting on Cognitive Function in Patients with Extracranial Carotid Artery Stenosis. Annals of Vascular Surgery, 29, 457-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Boehm-Sturm, P., Fuchtemeier, M., Foddis, M., Mueller, S., Trueman, R.C., Zille, M., Rinnenthal, J.L., Kypraios, T., Shaw, L., Dirnagl, U., et al. (2017) Neuroimaging Biomarkers Predict Brain Structural Connectivity Change in a Mouse Model of Vascular Cognitive Impairment. Stroke, 48, 468-475. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen, Y.H., Lin, M.S., Lee, J.K., Chao, C.L., Tang, S.C., Chao, C.C., et al. (2012) Carotid Stenting Improves Cognitive Function in Asymptomatic Cerebral Ischemia. The International Journal of Cardiology, 157, 104-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Baracchini, C., Mazzalai, F., Gruppo, M., Lorenzetti, R., Ermani, M. and Ballotta, E. (2012) Carotid Endarterectomy Protects Elderly Patients from Cognitive Decline: A Prospective Study. Surgery, 151, 99-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fearn, S.J., Hutchinson, S., Riding, G., Hill-Wilson, G., Wesnes, K. and McCollum, C.N. (2003) Carotid Endarterectomy Improves Cognitive Function in Patients with Exhausted Cerebrovascular Reserve. European Journal of Vascular and Endovascular Surgery, 26, 529-536. [Google Scholar] [CrossRef]
|
|
[26]
|
Bossema, E.R., Brand, N., Moll, F.L., Ackerstaff, R.G. and van Doornen, L.J. (2005) Does Carotid Endarterectomy Improve Cognitive Functioning? Journal of Vascular Surgery, 41, 775-781; discussion 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lunn, S., Crawley, F., Harrisson, M.J.G., Brown, M.M. and Newman, S.P. (1999) Impact of Carotid Endarterectomy upon Cognitive Functioning. A Systematic Review of the Literature. Cerebrovascular Diseases, 9, 74-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Feliziani, F.T., Polidori, M.C., De Rango, P., Mangialasche, F., Monastero, R., Ercolani, S., et al. (2010) Cognitive Performance in Elderly Patients Undergoing Carotid Endarterectomy or Carotid Artery Stenting: A Twelve-Month Follow-Up Study. Cerebrovascular Diseases, 30, 244-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Marshall, R.S., Lazar, R.M., Liebeskind, D.S., Connolly, E.S., Howard, G., Lal, B.K., Huston, J., Meschia, J.F. and Borott, T.G. (2018) Carotid Revascularization and Medical Management for Asymoptomatic Carotid Stenosis-Hemo- dynamics (CREST-H): Study Design and Rationable. International Journal of Stroke, 13, 985-991. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kalaria, R.N. (2018) The Pathology and Pathophysiology of Vascular Dementia. Neuropharmacology, 134, 226-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Skrobot, O.A., Black, S.E., Chen, C., DeCarli, C., Erkinjuntti, T., Ford, G.A., Kalaria, R.N., O’Brien, J., Pantoni, L., Pasquier, F., et al. (2018) Progress toward Standardized Diagnosis of Vascular Cognitive Impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer’s & Dementia, 14, 280-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Xu, Q., Cao, W.W., Mi, J.H., et al. (2014) Brief Screening for Mild Cognitive Impairment in Subcortical Ischemic Vascular Disease: A Comparison Study of the Montreal Cognitive Assessment with the Mini-Mental State Examination. European Neurology, 71, 106-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dong, Y., Shama, V.K., Chan, B.P., et al. (2010) The Montreal Cognitive Assessment (MoCA) Is Superior to the Mini-Mental State Examination (MMSE) for the Detection of Vascular Cognitive Impairment after Acute Stroke. Journal of Neurological Sciences, 299, 15-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Raja, R., Rosenberg, G.A. and Caprihan, A. (2018) MRI Measurements of Blood-Brain Barrier Function in Dementia: A Review of Recent Studies. Neuropharmacology, 134, 259-271. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Suri, M.F.K., Zhou, J., Qiao, Y., Chu, H., Qureshi, A.I., Mosley, T., Gottesman, R.F., Wruck, L., Sharrett, A.R., Alonso, A., et al. (2018) Cognitive Impairment and Intracranial Atherosclerotic Stenosis in General Population. Neurology, 90, e1240-e1247. [Google Scholar] [CrossRef]
|
|
[36]
|
Bouvy, W.H., Zwanenburg, J.J., Reinink, R., Wisse, L.E.M., Luijten, P.R., Kappelle, L.J., Geerlings, M.I. and Biessels, G.J., Utrecht Vascular Cognitive Impairment (VCI) Study Group (2016) Perivascular Spaces on 7 Tesla Brain MRI Are Related to Markers of Small Vessel Disease but Not to Age or Cardiovascular Risk Factors. Journal of Cerebral Blood Flow & Metabolism, 36, 1708-1717. [Google Scholar] [CrossRef]
|
|
[37]
|
Williams, O.A., Zeestraten, E.A., Benjamin, P., Lambert, C., Lawrence, A.J., Mackinnon, A.D., Morris, R.G., Markus, H.S., Charlton, R.A. and Barrick, T.R. (2017) Diffusion Tensor Image Segmentation of the Cerebrum Provides a Single Measure of Cerebral Small Vessel Disease Severity Related to Cognitive Change. NeuroImage: Clinical, 16, 330-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Charidimou, A., Boulouis, G., Gurol, M.E., Ayata, C., Bacskai, B.J., Frosch, M.P., Viswanathan, A. and Greenberg, S.M. (2017) Emerging Concepts in Sporadic Cerebral Amyloid Angiopathy. Brain, 140, 1829-1850. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cheema, I., Switzer, A.R., McCreary, C.R., Hill, M.D., Frayne, R., Goodyear, B.G. and Smith, E.E. (2017) Functional Magnetic Resonance Imaging Responses in CADASIL. Journal of Neurological Sciences, 375, 248-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lei, Y., Li, Y.J., Guo, Q.H., Liu, X.D., Liu, Z., Ni, W., Su, J.B., Yang, H., Jiang, H.Q., Xu, B., et al. (2017) Postoperative Executive Function in Adult Moyamoya Disease: A Preliminary Study of Its Functional Anatomy and Behavioral Correlates. Journal of Neurosurgery, 126, 527-536. [Google Scholar] [CrossRef]
|
|
[41]
|
Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Dong, Y., Konishi, J., et al. (1996) Atrophy of the Corpus Callosum Associated with Cognitive Impairment and Widespread Cortical Hypometabolism in Carotid Artery Occlusive Disease. Archives of Neurology, 53, 1103-1109. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Al-Qazzaz, N.K., Ali, S.H.B.M., Ahmad, S.A., et al. (2018) Discrimination of Stroke-Related Mild Cognitive Impairment and Vascular Dementia Using EEG Signal Analysis. Medical & Biological Engineering & Computing, 56, 137-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Swatridge, K., Regan, K. and Staines, W.R. (2017) The Acute Effects of Aerobic Exercise on Cognitive Control among People with Chronic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 2742-2748. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
de Moraes, F.M. and Bertolucci, P.F. (2018) The Contribution of Supplementary Tests in the Differential Diagnosis of Dementia. American Journal of Alzheimer’s Disease & Other Dementias, 33, 131-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Beishon, L., Haunton, V.J. and Panerai, R.B. (2017) Cerebral Hemodynamics in Mild Cognitive Impairment: A Systematic Review. Journal of Alzheimer’s Disease, 59, 369-385. [Google Scholar] [CrossRef]
|
|
[46]
|
Amezquita-Sanchez, J.P., Adeli, A. and Adeli, H. (2016) A New Methodology for Automated Diagnosis of Mild Cognitive Impairment (MCI) Using Magnetoencephalography (MEG). Behavioural Brain Research, 305, 174-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Baillet, S. (2017) Magnetoencephalography for Brain Electrophysiology and Imaging. Nature Neuroscience, 20, 327-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Farooq, M.U., Min, J., Goshgarian, C. and Gorelick, P.B. (2017) Pharmacotherapy for Vascular Cognitive Impairment. CNS Drugs, 31, 759-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Soman, S., Prasad, G., Hitchner, E., Massaband, P., Moseley, M.E., Zhou, W. and Rosen, A.C. (2016) Brain Structural Connectivity Distinguishes Patients at Risk for Cognitive Decline after Carotid Interventions. Human Brain Mapping, 37, 2185-2194. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, T., Sun, D., Liu, Y., Mei, B., Li, H., Zhang, S. and Zhang, J. (2017) The Impact of Carotid Artery Stenting on Cerebral Perfusion, Functional Connectivity, and Cognition in Severe Asymptomatic Carotid Stenosis Patients. Frontiers in Neurology, 8, 403. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lattanzi, S., Carbonari, L., Pagliariccio, G., Bartolini, M., Cagnetti, C., Viticchi, G., Buratti, L., Provinciali, L. and Silvestrini, M. (2018) Neurocognitive Functioning and Cerebrovascular Reactivity after Carotid Endarterectomy. Neurology, 90, e307-e315. [Google Scholar] [CrossRef]
|
|
[52]
|
Noshiro, S., Mikami, T., Komatsu, K., Kanno, A., Enatsu, R., Yazawa, S., Nagamine, T., Matsuhashi, M. and Mikuni, N. (2016) Neuromodulatory Role of Revascularization Surgery in Moyamoya Disease. World Neurosurgery, 91, 473-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Perng, C.-H., Chang, Y.-C. and Tzang, R.-F. (2018) The Treatment of Cognitive Dysfunction in Dementia: A Multiple Treatments Meta-Analysis. Psychopharmacology (Berl), 235, 1571-1580. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ahn, J.H., Choi, J.H., Park, J.H., Kim, I.H., Cho, J.H., Lee, J.C., Koo, H.M., Hwangbo, G., Yoo, K.Y. and Lee, C.H. (2016) Long-Term Exercise Improves Memory Deficits via Restoration of Myelin and Microvessel Damage, and Enhancement of Neurogenesis in the Aged Gerbil Hippocampus after Ischemic Stroke. Neurorehabilitation and Neural Repair, 30, 894-905. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lanza, G., Bramanti, P., Cantone, M., Pennisi, M., Pennisi, G. and Bella, R. (2017) Vascular Cognitive Impairment through the Looking Glass of Transcranial Magnetic Stimulation. Behavioural Neurology, 2017, Article ID: 1421326. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Marshall, R.S., Asllani, I., Pavol, M.A., Cheung, Y.K. and Lazar, R.M. (2017) Altered Cerebral Hemodyamics and Cortical Thinning in Asymptomatic Carotid Artery Stenosis. PLoS One, 12, e0189727. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mocco, J., Wilson, D.A., Komotar, R.J., Zurica, J., Mack, W.J., Halazun, H.J., et al. (2006) Predictors of Neurocognitive Decline after Carotid Endarterectomy. Neurosurgery, 58, 844-850; discussion-50. [Google Scholar] [CrossRef]
|
|
[58]
|
Ortega, G., Alvarez, B., Quintana, M., Yugueros, X., Alvarez-Sabin, J. and Matas, M. (2014) Asymptomatic Carotid Stenosis and Cognitive Improvement Using Transcervical Stenting with Protective Flow Reversal Technique. European Journal of Vascular and Endovascular Surgery, 47, 585-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Borroni, B., Tiberio, G., Bonardelli, S., Cottini, E., Facheris, M., Akkawi, N., et al. (2004) Is Mild Vascular Cognitive Impairment Reversible? Evidence from a Study on the Effect of Carotidendarterectomy. Neurological Research, 26, 594-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
O’Leary, D.H., Polak, J.F., Kronmal, R.A., Kittner, S.J., Bond, M.G., Wolfson Jr., S.K., et al. (1992) Distribution and Correlates of Sonographically Detected Carotid Artery Disease in the Cardiovascular Health Study. The CHS Collaborative Research Group. Stroke, 23, 1752-1760. [Google Scholar] [CrossRef]
|
|
[61]
|
Bernstein, M., Fleming, J.F. and Deck, J.H. (1984) Cerebral Hyperperfusion after Carotid Endarterectomy: A Cause of Cerebral Hemorrhage. Neurosurgery, 15, 50-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ogawa Ito, A., Shindo, A., Ii, Y., Matsuura, K., Tabei, K.I., Maeda, M., Umino, M., Suzuki, Y., Shiba, M., Toma, N., Suzuki, H. and Tomimoto, H. (2019) Microbleeds after Carotid Artervstenting: Small Embolism May Induce Cerebral Microbleeds. Cerebrovascular Diseases Extra, 9, 57-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ainslie, P.N., Cotter, J.D., George, K.P., Lucas, S., Murrell, C., Shave, R., et al. (2008) Elevation in Cerebral Blood Flow Velocity with Aerobic Fitness throughout Healthy Human Ageing. The Journal of Physiology, 586, 4005-4010. [Google Scholar] [CrossRef] [PubMed]
|