磷酸奥司他韦的研究进展
Research Progress of Oseltamivir Phosphate
DOI: 10.12677/HJCET.2020.106058, PDF, HTML, XML, 下载: 452  浏览: 1,462 
作者: 魏鹏艳*, 姜玉莹:锦州医科大学药学院,辽宁 锦州;钱 昆:锦州医科大学公共基础学院,辽宁 锦州
关键词: 磷酸奥司他韦流感副反应代谢物检验方法Oseltamivir Phosphate Influenza Side Effects Metabolites Detection Methods
摘要: 磷酸奥司他韦(商品名:达菲)是最有效的口服抗流感神经氨酸酶抑制剂之一,广泛用于A型和B型流行性感冒预防与治疗,小儿手足口病的治疗,磷酸奥司他韦对治疗流感病毒有独特的优势,但此前曾多次报道过服用此药后而导致呕吐、急性呼吸窘迫综合征、心跳加速等副反应,甚至有过自杀的案列。近几年来该药的滥用,有关人员发现的其代谢物对环境产生的一定影响,磷酸奥司他韦(OP)对人体产生的毒副作用及其对环境的影响加速了科研人员对其药物及代谢物进行分析检验,该文综述了近几年国内外对达菲的最新研究进展成果,希望可以为该药的探究进展提供更有效的信息。
Abstract: Oseltamivir phosphate (trade name: Tamiflu) is one of the most effective oral anti-influenza neuraminidase inhibitors, widely used in the prevention and treatment of influenza A and B, and the treatment of hand, foot and mouth disease in children. Oseltamivir phosphate has a unique advantage in the treatment of influenza virus, but it has been reported many times after taking this drug resulting in vomiting, acute respiratory distress syndrome, rapid heartbeat and other side reactions, and even suicide cases. In recent years, the abuse of the drug, a certain impact of its metabolites on the environment found by related personnel, the toxic side effects of oseltamivir phosphate on human body and its impact on the environment accelerated the researchers to analyze and test its drugs and metabolites. This paper reviews the latest research results of Tamiflu in recent years. Hope to provide more effective information on the progress of the drug.
文章引用:魏鹏艳, 姜玉莹, 钱昆. 磷酸奥司他韦的研究进展[J]. 化学工程与技术, 2020, 10(6): 449-455. https://doi.org/10.12677/HJCET.2020.106058

1. 引言

磷酸奥司他韦,别名可威,商品名达菲,分子式为C16H28N2O4∙H3PO4,性状为白至黄白色粉末,系统(IUPAC)名称:乙基(3R, 4R, 5S)-5-氨基-4-乙酰氨基-3-(戊烷-3-yloxy)环己-1-烯-1-羧酸盐磷酸。结构图如图1所示。奥司他韦是一种抗病毒药物,通过切断病毒与宿主细胞的化学联系来减缓流感病毒在体内细胞之间的传播药物时间至0.5~1天。该药常以口服胶囊、悬浮液剂型销售 [1]。流感病毒对于我们来说并不陌生,是除了人类免疫缺陷病毒(HIV)研究最广泛的感染病毒,但在改变流感感染机制的研究进程依旧没有进展 [2] [3]。目前全球社会中,像H5N1这种具有高侵略性、易变异、传染性强的流感病毒株,一旦发生毒株变异就会引发一种致命的大流行病,就像严重的急性呼吸综合征冠状病毒2 (sars-cov-2)感染一样在大范围内感染 [1] [2] [3]。突变的耐药流感病毒株的激增,促使我们需要继续扩大研究范围,发现更加有疗效的神经氨酸酶抑制剂预防流感的爆发。当前所用的抗流感药物是通过一系列构效关系,而开发新型有效的神经氨酸酶抑制剂模板 [1] [4] [5] [6] [7] [8]。对新的和更好的疗效的药物的研究仍然是当务之急,更为重要的是开发高效的合成程序来保护人类免受流感的折磨,提高目前抗流感药物的可用性。磷酸奥司他韦作为抗流感神经氨酸酶抑制剂对治疗流感病毒有独特优势,但相关报道指出在该药的广泛应用中发现了一些潜在危害,有儿童服用OP后引起精神错乱、器官衰竭、幻觉等严重的副作用 [9],一位日本小男孩服用该药从公寓跳下身亡,这是日本发生的第18起服用该药死亡案例,美国食品药品管理局也曾警惕医生和家长谨慎服用此药,并密切观察孩子身体状况,日本和美国对“达菲”可能产生的副作用进行调查研究 [10],不仅仅是药物本身的毒副作用,药物的代谢物也会污染环境,研究指出药物和个人护理产品(PPCPs)对环境污染产生越来越严重的影响 [11],其具有的生物活性对水生生物生存发展产生潜在危险,OP对环境的危害主要是经人体摄入体内吸收后排泄,微量代谢物经过废水处理 [12] [13],排放到水环境中导致野生动物中抗OP菌株的发展 [14],不仅会破坏自然生态系统,甚至会在一些国家爆发流感大流行。在中国将OP作为抗病毒兽药(批准560的中国农业部公报)使用是非法的 [15],尤其是在家禽业,家禽体内OP残基可能通过食物进入人体内,对人体生命健康造成影响,有关研究表明摄入过量的OP会导致胃肠紊乱 [16] [17] 和突然死亡 [18] [19] 等严重副反应。综合总体,达菲虽然对流感、禽流感的治疗方面有着特有的疗效,但“达菲”存在威胁生命健康的副作用、其排泄物对水环境的污染、在家禽类摄入供应中OP残留物的检测对人类健康至关重要,加速了我们对磷酸奥司他韦的检测方法的探索。

Figure 1. Structure formula of oseltamivir phosphate [20]

图1. 磷酸奥司他韦结构 [20]

2. 检测方法

2.1. 电化学法(EC)

Elsaid [20] 等人在电化学的基础上,根据聚氯乙烯(PVC)膜传感器的结构和电化学响应特性来测定OP,基于NaTPB-OP、TS-OP、PM-OP和PT-OP的电极表现出高度的OP选择性,这会使得它在监测实际样品中OP的浓度水平方面具有潜在的应用价值,用此电极进行药物制剂中OP的测定,检测出OP在105至102 molL−1的浓度范围内具有快速、稳定和线性的响应。用所提出的传感器直接电位测定OP,分别得出NaTPB-OP、TS-OP、PM-OP和PT-OP的平均回收率分别为99.9、99.8、99.9和99.7,将校准图线性区域外推到基线电位时得到的检测限分别为1.5 × 10−5至1.0 × 10−2 molL−1、2.0 × 10−5至1.0 × 10−2 molL−1、2.5 × 10−5至1.0 × 10−2 molL−1、3.5 × 10−5至1.0 × 10−2 molL−1,该方法已成功地应用于工业上生产药品达菲的检验,该方法也成功的验证表明了所提出的传感器对该药品质量检测上的适用性。在Elsaid的实验中用于检验OP的新改造的四个构建的传感器,其浓度范围是一个重要的考虑因素,是实验人员发现的一种具有高选择性、高灵敏度、高重现性的新型传感器的药物检验方法,更快、更准确检测出药物制剂中的磷酸奥司他韦。

2.2. 荧光检测法(FD)

荧光分析法是指被测药物被紫外光照射后处于激发状态,再经历去激发过程后反映出被检测药物的荧光特性,用于药物的定性或定量分析。以前采用FD方法测定磷酸奥司他韦不具最大荧光发射,Omar [21] 等人开发并验证了一种通过Hantzsch反应测定人血浆中磷酸奥司他韦及其降解产物的稳定性指示荧光法,基于乙酰丙酮和甲醛通过Hantzsch反应在475 nm处与OSP的一级氨基反应形成黄色荧光二氢吡啶衍生物测量光谱,并对其相关参数条件进行研究和优化,利用最佳反应条件,得出浓度与强度之间的关系在0.4~2.8 μg mL−1范围内呈线性关系,并得到其相关系数为0.9990,采用标准添加法检验准确度,计算出的高百分比平均回收率和低标准差也确定了该方法的合适精度,并且分析OP的6个重复溶液来检验精密度,发现RSD值较低,该方法具有良好的重复性和重现性,得出LOD值和LOQ值分别为0.08和0.24 μg mL−1,参数的低值表明了该方法的高灵敏度,所提出的方法由于其改进的简单性、灵敏度、低成本和对昂贵仪器或关键分析试剂的独立性,在所引用药物的质量控制分析中具有很大的价值。

2.3. 拉曼光谱法(Ram)

拉曼光谱法是应用于分析分子结构的散射光谱,通过与散射光谱进行分析获得分子振动、转动方面的信息。张民山 [22] 采用拉曼光谱法检测药物制剂中OP含量,构建并优化了磷酸奥司他韦分子空间结构,并利用OP的表面静电势定位磷酸盐的吸附位点,修正振动频率,具有较高匹配度的拉曼活性,低频区域的校正因子数值近似0.97,对OP在50~3800 cm−1波段的拉曼活性谱峰的振动模式做了指认。该项工作更进一步促进OP在医药领域的基础性研究。

Table 1. An overview of the advantages and disadvantages of the improved method [20] [21] [22]

表1. 改进后方法优缺点概述 [20] [21] [22]

2.4. 侧流免疫层析条带试验(LFIST)

迄今为止,我们熟知且常用的几种检测OP分析方法,主要包括高效液相色谱法HPLC [23] [24]、超高效液相色谱–串联质谱(HPLC-MS/MS) [25] [26]、电化学检测方法(EC)、液相色谱–质谱(LC-MS) [27]。以上这些方法对OP的检测非常准确和敏感,但却依赖于昂贵的分析仪器、熟练的专业人员、复杂的预处理步骤以及废液处理,最主要的是它们不适合高通量检测和实时现场检测,但LFIST利用抗体和抗原之间的特定相互作用,可以用于磷酸奥司他韦(OP)的快速、灵敏的现场检测。杨兴东 [28] 等人制备了一种抗OP的高特异性单克隆抗体(Mabs),并以胶体金标记mabs为探针,研制了LFIST就OP的检验,在鸡蛋样品和鸡肉样品检验中LOD分别为0.43 µg/kg和0.42 µg/kg,并检测到OP标样的回收率为84.6%~91.2%,鸡样的回收率为82.8%~90.6%在平行测试中,LFIST的性能与高效液相色谱(HPLC)相当,但LFIST所需检测时间不到5分钟,并借助条形阅读器提供定量结果。非常快速和容易被非专业人员使用,因此可以作为现场检测OP残基的监视工具,这使得它成为监测肉食品中OP的安全非常方便的工具。

2.5. 液相色谱–质谱联用法(HPLC-MS)

LC-MS是以液相色谱作为分离系统,质谱作为检测系统,所测药物经流动相分离后进行离子化,按质量数将离子碎片分开得到质谱图的一种检验方法。检测人血清中的OP,黄美芳 [29] 等人通过改进一种方法来合成得到同位素,对OP和OC类似物进行还原胺化,并进行了改性,采用Thermo Finigan TSQ量子超三重四极质谱仪(MS/MS)与Thermo FiniganAcella 1250自动放大器和超高效液相色谱(UHPLC,Thermo Fisher科学公司,Waltham,MA,美国)联用对类似物进行定量 [30] [31],检验结果得出N-二甲基化OP的动态线性范围为0.9995、N-二甲基化OC的个体系数为0.9999。除此之外还得到平均回收率为84.6%~107.7%,LOD为0.5 ng/mL,不仅简化了两种化合物的定量同位素的内部标准,而且增强了OP和OC显示信号,更加有利于MS对于代谢物的检测。在检测磷酸奥司他韦代谢物在水环境中质量的研究中,Osamu [32] 等人采用固相萃取和同位素稀释(ID)液相色谱/串联质谱(LC/MS/MS)对地表水中OP含量进行测定,对每种标记的内部化合物采用ID法进行精确定量,获得较高的目标化合物响应强度,方法具有良好的线性为0.9957,回收率为89%~106%,检出限为0.2~1.9 ng L−1,检测到大多数目标化合物的低至高纳米浓度,研究开发的分析方法是监测地表水中目标化合物的有用手段。

2.6. 紫外可见分光光度法(UV)

UV是一种测量物质内部量子化的能级跃迁所产生发射、吸收或散射辐射的波长和强度分析的方法,Yanjane等科研人员 [33] 采用UV对磷酸奥司他韦进行测定,测定出OP在标准限度内线性参数被发现验证,并对样品溶液进行6次测定,证明磷酸奥司他韦的RSD小于2%,LOD为2.08 μg/ml,并且检测出线性系数为0.9987,表明可以检测到浓度很低的药物,在可认可的准确度和精密度范围内定量确定样品中分析物的最低浓度,同时检测出定量限为6.93 μg/ml。因此,可以检测出非常低的药物浓度。所用的紫外分光光度法简单、经济、精确、线性、特异性和高灵敏度,可用于磷酸奥司他韦的常规估算。

针对我们常用的检验方法在做了一些简要的概述,主要对改进后的优缺点进行论述,详细见表1,我们也分析了最近几年最新的检验成果,包括可以现场检测的LFIST法,大范围内减少检测时间;对还原胺化的OP进行检验的LC-MS法,增强OP的显示信号;可以检测到OP浓度非常低的UV法,对以上三种方法进行了简要概述,详细见表2

Table 2. Overview of inspection methods [28] - [33]

表2. 检验方法概述 [28] - [33]

3. 总结与展望

随着科学技术的进步,虽然多次对达菲药物本身进行优化,但其药品的副反应对人体的伤害,药物代谢物对环境产生的影响,剂型的对药效影响的问题依旧存在,本文论述了近几年科研人员在基础检验方法上进行的突破来检测药品,开发了高稳定性、低成本、操作简单、灵敏度更高的检测方法,但还存在一些问题,需要我们进一步完善,以及药品研制过程产生影响药效的杂质的研究水平还有待提高,开发更加精确,实用的检测方法需要我们继续研究探讨,为人类公共卫生事业付出应有的贡献。

致谢

感谢钱昆教授的支持与指导,感谢此文章所参考文献的作者,感谢各位作者的帮助。

NOTES

*通讯作者。

参考文献

[1] Sagandira, C.R., Mathe, F.M., Guyo, U. and Watts, P. (2020) The Evolution of Tamiflu Synthesis, 20 Years on: Advent of Enabling Technologies the Last Piece of the Puzzle? Tetrahedron, 76, Article ID: 131440.
[2] Saunders-Hastings, P.R. and Krewski, D. (2016) Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens, 5, 66.
https://doi.org/10.3390/pathogens5040066
[3] Taubenberger, J.K. (2010) Influenza: The Once and Future Pandemic. Public Health Reports, 125, 15-26.
https://doi.org/10.1177/00333549101250S305
[4] Cai, Y., Hao, Z., Gao, Y., Ping, W., Wang, Q., Peng, S., Zhao, B., Sun, W., Zhu, M., Li, K., Han, Y., Kuang, D., Chu, Q., Fu, X. and Zhang, N.J. (2020) Coronavirus Disease 2019 in the Perioperative Period of Lung Resection: A Brief Report from a Single Thoracic Surgery Department in Wuhan, People’s Republic of China. Journal of Thoracic Oncology, 15, 1065-1072.
https://doi.org/10.1016/j.jtho.2020.04.003
[5] Warfield, K.L., Schaaf, K.R., DeWald, L.E., Spurgers, K.B., Wang, W., Stavale, E., Mendenhall, M., Shilts, M.H., Stockwell, T.B., Barnard, D.L., Ramstedt, U. and Das, S.R. (2019) Lack of Selective Resistance of Influenza A Virus in Presence of Host-Targeted Antiviral, UV-4B. Scientific Reports, 9, Article No. 7484.
https://doi.org/10.1038/s41598-019-43030-y
[6] Dobrovolny, H.M. and Beauchemin, C.A.A. (2017) Modelling the Emergence of Influenza Drug Resistance: The Roles of Surface Proteins, the Immune Response and Antiviral Mechanisms. PLoS ONE, 12, e0180582.
https://doi.org/10.1371/journal.pone.0180582
[7] Kato, D., Kurebayashi, Y., Takahashi, T., Otsubo, T., Otake, H., Yamazaki, M., Tamoto, C., Minami, A., Ikeda, K. and Suzuki, T. (2018) An Easy, Rapid, and Sensitive Method for Detection of Drug-Resistant Influenza Virus by Using a Sialidase Fluorescent Imaging Probe, BTP3-Neu5Ac. PLoS ONE, 13, e0200761.
https://doi.org/10.1371/journal.pone.0200761
[8] Pizzorno, A., Abed, Y. and Boivin, G. (2011) Influenza Drug Resistance. Seminars in Respiratory and Critical Care Medicine, 32, 409-422.
https://doi.org/10.1055/s-0031-1283281
[9] Hussain, M., Galvin, H.D., Haw, T.Y., Nutsford, A.N. and Husain, M. (2017) Drug Resistance in Influenza A Virus: The Epidemiology and Management. Infection and Drug Resistance, 10, 121-134.
https://doi.org/10.2147/IDR.S105473
[10] 广东省卫生健康委员会. 关于进一步加强人感染H7N9禽流感医疗救治工作的通知[R]. 粤卫函{2014}234号.
[11] Yang, Y., Ok, Y.S., Kim, K.-H., Kwon, E.E. and Tsang, Y.F. (2017) Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Science of the Total Environment, 596-597, 303-320.
https://doi.org/10.1016/j.scitotenv.2017.04.102
[12] Kiguchi, O., Sato, G. and Kobayashi, T. (2016) Source-Specific Sewage Pollution Detection in Urban River Waters Using Pharmaceuticals and Personal Care Products as Molecular Indicators. Environmental Science and Pollution Research, 23, 22513-22529.
https://doi.org/10.1007/s11356-016-7437-z
[13] Fent, K., Weston, A.A. and Caminada, D. (2006) Ecotoxicology of Human Pharmaceuticals. Aquatic Toxicology, 76, 122-159.
https://doi.org/10.1016/j.aquatox.2005.09.009
[14] Fatta, D., Nikolaou, A., Achilleous, A. and Meriç, S. (2007) Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater. Trends in Analytical Chemistry, 26, 515-553.
https://doi.org/10.1016/j.trac.2007.02.001
[15] Sunagawa, S., Iha, Y., Taira, K., Okano, S., Kinjo, T., Higa, F., Kuba, K., Tateyama, M., Nakamura, K., Nakamura, S., Motooka, D., Horii, T., Parrott, G.L. and Fujita, J. (2016) An Epidemiological Analysis of Summer Influenza Epidemics in Okinawa. Internal Medicine, 55, 3579-3584.
https://doi.org/10.2169/internalmedicine.55.7107
[16] Wu, S., et al. (2017) Development of a Competitive Im-munochromatographic Assay for the Sensitive Detection of Amantadine in Chicken Muscle. Food Chemistry, 232, 770-776.
https://doi.org/10.1016/j.foodchem.2017.04.058
[17] Dalvi, P.S., Singh, A., Trivedi, H.R., Mistry, S.D. and Vyas, B.R. (2011) Adverse Drug Reaction Profile of Oseltamivir in Children. Journal of Pharmacology & Phar-macotherapeutics, 2, 100-103.
https://doi.org/10.4103/0976-500X.81901
[18] Dutkowski, R., et al. (2003) Safety and Pharmacology of Oseltamivir in Clinical Use. Drug Safety, 26, 787-801.
https://doi.org/10.2165/00002018-200326110-00004
[19] Kim, H.-K. and Park, K.J.J. (2012) A New Efficient Synthesis of Oseltamivir Phosphate (Tamiflu) from (-)-Shikimic Acid. Tetrahedron Letters, 53, 1561-1563.
https://doi.org/10.1016/j.tetlet.2012.01.017
[20] Hamza, S.M., Rizk, N.M.H. and Matter, H.A.B. (2017) A New Ion Selective Electrode Method for Determination of Oseltamivir Phosphate (Tamiflu) and Its Pharmaceutical Applica-tions. Arabian Journal of Chemistry, 10, S236-S243.
https://doi.org/10.1016/j.arabjc.2012.07.029
[21] Omar, M.A., Derayea, S.M. and Mostafa, I.M. (2015) Devel-opment and Validation of a Stability-Indicating Spectrofluorimetric Method for the Determination of H1N1 Antiviral Drug (Oseltamivir Phosphate) in Human Plasma through the Hantzsch Reaction. RSC Advances, 5, 27735-27742.
https://doi.org/10.1039/C4RA16650G
[22] 张民山, 蔡红星. 磷酸奥司他韦的拉曼光谱分析[J]. 长春理工大学学报, 2016, 39(1): 116-120, 87.
[23] Green, M.D., Nettey, H. and Wirtz, R.A. (2008) Determination of Oseltamivir Quality by Colorimetric and Liquid Chromatographic Methods. Emerging Infectious Diseases, 14, 552-556.
https://doi.org/10.3201/eid1404.061199
[24] Liu, Z., Yang, F., Yao, M., Lin, Y. and Su, Z. (2015) Simultaneous Determination of Antiviral Drugs in Chicken Tissues by Ultra High Performance Liquid Chromatography with Tandem Mass Spectmetry. Journal of Separation Science, 38, 1784-1793.
https://doi.org/10.1002/jssc.201401461
[25] Mu, P., et al. (2016) Simultaneous Determination of 14 Antiviral Drugs and Relevant Metabolites in Chicken Muscle by UPLC-MS/MS after QuEChERS Preparation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1023-1024, 17-23.
https://doi.org/10.1016/j.jchromb.2016.04.036
[26] Wu, H., et al. (2017) Development and Application of an In-Cell Cleanup Pressurized Liquid Extraction with Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry to Detect Prohibited Antiviral Agents Sensitively in Livestock and Poultry Feces. Journal of Chromatography A, 1488, 10-16.
https://doi.org/10.1016/j.chroma.2017.01.070
[27] Boberg, M., et al. (2017) Age-Dependent Absolute Abundance of Hepatic Carboxylesterases (CES1 and CES2) by LC-MS/MS Proteomics: Application to PBPK Modeling of Oseltamivir in Vivo Pharmacokinetics in Infants. Drug Metabolism & Disposition, 45, 216-223.
https://doi.org/10.1124/dmd.116.072652
[28] Yang, X.D., Yang, J.F., Wang, Y.B., Li, L.L., Sun, Z.K., Yue, Z.H., Tian, F.S., He, L. and Hu, X.F. (2018) A Lateral Flow Immunochromato-Graphic Strip Test for Rapid Detection of Oseltamivir Phosphate in Egg and Chicken Meat. Scientific Reports, 8, Article No. 16680. http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1038/s41598-018-35080-5
[29] Huang, M.-F., Lin, Y.-R., Changa, Y.-T., Shiue, Y.-L. and Liang, S.-S. (2018) Reductive Amination Assistance for Quantification of Oseltamivir Phosphate and Oseltamivir Carboxylate by HPLC-MS/MS. Journal of Chromatography B, 1087-1088, 23-28.
https://doi.org/10.1016/j.jchromb.2018.03.040
[30] Liang, S.S., Wang, T.N., Chiu, C.C., Kuo, P.L., Huang, M.F., Liu, M.C. and Tsai, E.M. (2016) Reductive Amination-Assisted Quantitation of Tamoxifen and Its Metabolites by Liquid Phase Chromatography Tandem Mass Spectrometry. Journal of Chromatography A, 1434, 64-69.
https://doi.org/10.1016/j.chroma.2016.01.015
[31] Tsai, D.C., Liu, M.C., Lin, Y.R., Huang, M.F. and Liang, S.S. (2016) A Novel Reductive Amination Method with Isotopic Formaldehydes for the Preparation of Internal Standard and Standards for Determining Organosulfur Compounds in Garlic. Food Chemistry, 197, 692-698.
https://doi.org/10.1016/j.foodchem.2015.11.022
[32] Kiguchi, O., Ishii, T., Watanabe, T., Konno, R., Matsubuchi, A. and Kobayashi, T. (2019) Determination of Oseltamivir Phosphate and Its Metabolite with Other Pharmaceuticals in Surface Waters Using Solid Phase Extraction and Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry. International Journal of Environmental Analytical Chemistry. https://www.tandfonline.com/loi/geac20
[33] Yanjane, S.A., Ghurghure, S.M. and Matole, V.K. (2020) UV Spectrophotometric Analysis and Validation of Oseltamivir Phosphate in Pure and Pharmaceutical Formulation. International Journal of Current Pharmaceutical Research, 12, 111-114.
https://doi.org/10.22159/ijcpr.2020v12i2.37505