电刺激小脑顶核对原发性开角型青光眼视网膜血氧的影响
Effect of Electrical Fastigial Nucleus Stimulation on Retinal Vessel Oxygen Saturation in Primary Open-Angle Glaucoma
DOI: 10.12677/HJO.2020.94038, PDF, 下载: 372  浏览: 715 
作者: 栗改云*, 李 慧, 高晓虹:山西省眼科医院玻璃体视网膜病科,山西 太原;张 虹:华中科技大学同济医学院附属同济医院眼科,湖北 武汉
关键词: 原发性开角型青光眼小脑顶核电刺激血氧饱和度Primary Open-Angle Glaucoma Fastigial Nucleus Electrical Stimulation Oxygen Saturation
摘要: 目的:探讨电刺激小脑顶核(Electrical fastigial nucleus stimulation, FNS)对原发性开角型青光眼(Primary open-angle glaucoma, POAG)患者视网膜血管血氧饱和度和直径的影响。方法:同济医院眼科门诊顺序就诊的POAG患者24名24只眼(平均年龄41.0 ± 10.2岁)和年龄、性别相匹配的健康自愿者26名26只眼(平均年龄38.7 ± 12.8岁)纳入研究。所有受检者接受30 min电刺激小脑顶核。采用视网膜血氧饱和度分析仪(Oxymap T1)检测刺激前后视网膜颞上动脉及颞上静脉的血氧饱和度和直径的变化。比较两组受试者接受FNS刺激后视网膜血管血氧饱和度及直径的变化情况。结果:电刺激小脑顶核30 min后,只有POAG患者SaO2较刺激前升高,其差异有统计学意义(t = −2.484, p = 0.021)。同时,FNS诱发的POAG患者的视网膜动脉和静脉直径的扩张均有统计学意义(t = −2.330, −2.113, p = 0.029, 0.046)。在正常对照组,FNS刺激后,SaO2、SvO2和AVD均没有显著性变化(all p > 0.05),只有视网膜静脉直径的扩张有统计学意义(t = −2.629, p = 0.014)。结论:电刺激小脑顶核轻度扩张POAG患者视网膜动静脉血管直径,并增加视网膜血氧供应,为青光眼的抗缺血视神经保护治疗提供新思路和理论基础。
Abstract: Aim: To determine how electrical fastigial nucleus electrical stimulation (FNS) affects the supply of oxygen to the retina in primary open-angle glaucoma (POAG). Methods: Twenty-four patients (mean age 41.0 ± 10.2 years) with POAG and 26 healthy volunteers (mean age 38.7 ± 12.8 years) were included. Both patients and volunteers received 30 minutes of FNS. Oxygen saturation and the diameters of one major temporal artery and vein were measured using a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed at baseline and after stimulation. Retinal arterial (SaO2) and venous (SvO2) oxygen saturation were evaluated according to the difference of the extinction spectra of haemoglobin and oxyhaemoglobin. The arterio-venous difference (AVD) was calculated by (SaO2 - SvO2). Statistical analysis was performed to investigate the difference in reaction to FNS between the two groups. Results: A significant increase in oxygen saturation caused by FNS was only found in the retinal artery of patients with POAG (t = −2.484, p = 0.021). Further, stimulation induced both arterial and venous vasodilation in patients with POAG (t = −2.330, −2.113; p = 0.029, 0.046, respectively). In healthy controls, there was no FNS-induced change in oxygen saturation (all p > 0.05) and significant vasodilation induced by FNS only occurred in the retina veins (t = −2.629; p = 0.014). Conclusion: FNS induces an increasein retinal blood flow and retinal oxygen saturation in patients with POAG. It may offer a new approach to providing neuroprotection in patients with POAG or other ischemic optic neuropathy.
文章引用:栗改云, 张虹, 李慧, 高晓虹. 电刺激小脑顶核对原发性开角型青光眼视网膜血氧的影响[J]. 眼科学, 2020, 9(4): 265-273. https://doi.org/10.12677/HJO.2020.94038

1. 引言

青光眼是一种重要的致盲性疾病,而且是不可逆性视力丧失的首要原因 [1]。原发性开角型青光眼(Primary open-angle glaucoma, POAG)视神经损害机制主要有机械压力和缺血两种学说,除了高眼压,越来越多的证据表明,缺血缺氧在原发性开角型青光眼的病变发展中起着重要的作用 [2] [3] [4] [5]。

电刺激小脑顶核(Electrical fastigial nucleus stimulation, FNS)是近二十年来兴起的,并不断被证实对缺血性脑病有神经保护治疗作用的有效方法 [6]。Doba等 [7] 于1972年首先观察到电刺激小脑顶核可增加颈总动脉的血流量并增强大脑皮质的供氧作用,后证实FNS可通过血管反射性扩张使包括脊髓在内的整个中枢神经系统血流量的增加,从而加快血流速度,改善微循环,改善脑部梗死区的缺血 [8] [9]。鉴于眼动脉为颈内动脉的分支,视神经属于中枢系统的一部分,我们有理由相信FNS也可以增加视网膜血供,并起到保护视神经的作用。王军明等 [10] 观察到电刺激人小脑顶核可有效扩张视网膜血管直径。目前已有人尝试将FNS用于缺血性视网膜疾病的治疗并取得一定疗效 [11] [12]。但电刺激小脑顶核能否改善POAG患者的血氧供应,目前尚未见相关报道。

目前抗青光眼治疗方法,靶目标主要是降低眼压(Intraocular pressure, IOP)。既然POAG患者的青光眼性视神经损害还有缺血机制参加,那么探索可有效增加视网膜、视神经血供的治疗途径有着非常重要的临床意义。本研究拟利用上海仁和医疗设备公司生产的脑电仿生电刺激仪(CVFT-011M)对POAG患者及正常对照进行FNS刺激,应用视网膜血氧饱和度分析仪(Oxymap T1)评估刺激前后视网膜血管血氧饱和度及血管直径的变化,从而为POAG的抗缺血治疗提供新的思路。

2. 资料和方法

2.1. 研究对象

2018年8月~2019年12月在华中科技大学同济医学院同济附属医院眼科顺序就诊的POAG患者和体检的自愿者中,有24例POAG患者符合纳入标准,每例患者取已有青光眼性眼底改变的1眼纳入研究,若双眼均有青光眼性视野缺损,随机选择一眼进入研究。同时纳入26例无明显眼部及全身疾患的健康志愿者,随机选择一眼作为对照眼。青光眼组:男性14人,女性10人,年龄21~58岁,平均年龄(41.0 ± 10.2)岁。正常对照组:男性12人,女性14人,年龄22~63岁,平均年龄(38.7 ± 12.8)岁。两组间年龄差异无统计学意义(t = −0.712, p = 0.480)。此研究遵循涉及人类受试者的赫尔辛基宣言的条款,并经同济医院伦理审查委员会2017年12月审查批准,所有受检者均被告知检查目的,并获得受检者同意。

POAG纳入标准:1) 眼压 > 21 mmHg (初诊时三次压平眼压计测量值);2) 具有青光眼性视盘损害和/或视网膜神经纤维层缺损;3) 具有青光眼性视野缺损;4) 眼压高时房角为开角。具有以上四项或具有4)项及前三项中任意两项时诊断为POAG。

POAG排除标准:1) 有外伤史;2) 有眼部手术史;3) 角膜、晶状体中重度混浊;4) 伴有葡萄膜炎、玻璃体视网膜疾病、非青光眼性视神经疾病、动静脉阻塞等眼底血管病变;5) 屈光度 > ±4D;6) 有高血压、糖尿病等全身疾病;7) 有不能合作的精神、智力等因素及因中心视力受损不能固视的患者。

2.2. 研究方法

1) 所有受试者FNS前常规检查:

① 采用Snellen视力表测定裸眼视力和矫正视力;② 采用电脑自动验光仪(SV20GR-2100型)进行小瞳验光;③ 采用压平眼压计测量眼压;④ 行裂隙灯眼前段检查,房角镜下房角检查,直接检眼镜眼底检查;⑤ 角膜厚度检查(CCT, A-mode ultrasound);⑥ 电脑视野检查(Humphrey, 30-2, SITA-standard);⑦ OCT检查视网膜神经纤维层厚度(RNFLT, Spectralis, Heidelberg, Germany)。

所有受检者在静坐休息5 min后使用自动血压计测量血压,分别记录收缩压(Systolic blood pressure, SP)和舒张压(Diastolic blood pressure, DP)。平均动脉压(Mean arterial pressure, MAP)根据公式计算获得:MAP = 2/3DP + 1/3SP。然后计算平均眼灌注压(Mean ocular perfusion pressure, OPP):OPP = 2/3MAP − IOP。所有的检查结果被记录下来,用于随后的研究分析。

2) 实验方法

采用上海仁和医疗设备公司生产的脑电仿生电刺激仪(CVFT-011M; Renhe Medical Equipment Co., Ltd., Shanghai, China)对受试者实施外部小脑顶核电刺激。将两个刺激电极置于受试者双耳侧的乳突处并粘贴固定,刺激时间为30 min。仪器设置参数为:模式1,频率131%,强度70%~90%。

3) 视网膜血氧饱和度及血管直径的测量

受检者在接受FNS刺激前和刺激结束后,均由Oxymap T1视网膜血氧饱和度分析仪(Oxymap ehf., Reykjavik, Iceland)进行视网膜血氧饱和度及血管直径的测定。受检眼使用复方托吡卡胺(5% phenylephrine and 5% tropicamide; Sinqi Pharmaceutical Co., Ltd., Shenyang, Liaoning Province, China)充分散大瞳孔。患者在暗室内适应20 min后,取坐位,头部摆放在Oxymap T1眼底照相机下颌固定支架的适当位置,在外置固视目标的引导下使受检眼的视盘位于图像中央。根据检查者屈光度调整目镜聚焦。仪器参数:1) 小孔径和大瞳孔模式;2) 闪光强度50 Ws;3) 眼底图像范围50˚;4) 最低光照强度。在暗室内采用577 nm和600 nm波长过滤器采集图像,系统自动融合成视网膜血氧饱和度图。由同一位熟练的技术员重复采集每位受检者眼底图像3次。

图像分析步骤:1) 每只眼只选择聚焦、对比度等质量最佳的一张图像进行分析;2) 采用画圈工具在眼底图像上分别作半径为1、1.5个视盘直径(disk diameter, DD)的视盘同心圆,所有分析在此同心圆形成的环形区域范围内进行;3) 选择直径 > 8 pixels,相伴行的颞上动脉和静脉各一条纳入分析。从内圈开始直到外圈有下列现象的血管段均不纳入测量:1) 有血管交叉;2) 有血管分支;3) 伴行血管走行太靠近,影响到测量值;4) 在FNS刺激后采集的图片中,需测量部分不能完整、清晰显示,并满足测量要求的血管。如果颞上血管没有满足上述测量条件的动静脉,顺序在颞下、鼻上和鼻下象限寻找符合条件的血管。测量位置见图1所示。

Figure 1. Site of measurement at the fundus. The measurements were performed within a peripapillary annulus with an inner radius of 1 and an outer radius of 1.5 optic diameters. In this fundus image, the superotemporal arteriolar and venular vessels have been selected for analysis

图1. 视网膜血管测量位置图示。一个半径为1 DD的内圈和一个半径为1.5 DD的外圈形成一个环形区域,图中位于环形区域内的颞上动脉和静脉已被选中进行分析

通过Oxymap T1配套软件(Oxymap Analyzer software 2.5.0.10927; Oxymap ehf.)测量分析选定视网膜血管的血氧饱和度和血管直径。因为血液流速与血管直径相关 [13],视网膜血氧饱和度分析仪测定的血管血氧饱和度的测量值会随着所测血管直径的增加而人为的降低,实际的血氧饱和度需根据血管直径进行校正。Geirsdottir等 [14] [15] 推荐,不同直径的视网膜血管的实际血氧饱和度需根据下列公式校正:动脉血氧饱和度 = 测定值 + 1.16% × [直径(pixels) − 平均直径(pixels)];静脉血氧饱和度 = 测定值 − 1.16% × [直径(pixels) − 平均直径(pixels)]。所有受检者根据上述步骤分别测定所选血管的视网膜动脉血氧饱和度(retinal arterial oxygen saturation, SaO2)和视网膜静脉血氧饱和度(Retinal venous oxygen saturation, SvO2),规定视网膜血氧饱和度动静脉差(Arteriolar-venular difference, AVD) = SaO2 − SvO2。所有选定血管的血管直径、SaO2、SvO2以及AVD均由两位技术员分别独立测量一次,然后取平均值。

2.3. 统计学方法

采用SPSS 12.0 (SPSS Inc., Chicago, IL)统计分析软件进行分析:所有数据以 x ¯ ± s 形式描述。FNS刺激前后的参数变化差异进行配对t检验。POAG组和正常对照组之间的差异进行独立样本t检验。p < 0.05为差异有统计学意义。

3. 结果

3.1. FNS刺激前基线资料

POAG患者和正常对照组之间的年龄、性别构成、屈光度、眼压、角膜厚度、平均动脉压以及平均眼灌注压之间无差异。与正常对照组相比,青光眼组视野更差,视网膜神经纤维层更薄,差异有统计学意义。小脑顶核电刺激前,POAG患者组与正常对照组间,SaO2,SvO2,AVD,动脉直径,以及静脉直径之间的差异均没有统计学意义(all p > 0.05)。受检者的一般情况详见表1

Table 1. Basic information and ocular biological parameters ( x ¯ ± s )

表1. 研究对象基本信息及眼部生物参数资料( x ¯ ± s )

POAG,原发性开角型青光眼;SaO2,视网膜动脉血氧饱和度;SvO2,视网膜静脉血氧饱和度;AVD,视网膜血氧饱和度动静脉差。

3.2. FNS刺激对视网膜血氧饱和度的影响

在POAG患者组,SaO2明显增高,差异有统计学意义(t = −2.484, p = 0.021),而SvO2和AVD刺激后没有明显变化,差异无统计学意义(t = −1.813, 0.475, p = 0.083, 0.639)。在正常对照组,刺激后SaO2、SvO2以及AVD均没有显著性变化(t = −1.055, −1.963, 0.901, p = 0.301, 0.061, 0.376)。

3.3. FNS刺激对视网膜血管直径的影响

FNS刺激后,POAG患者的视网膜动脉和静脉直径均明显扩张,动脉较刺激前扩张4.45%,静脉较前扩张7.78%,差异有统计学意义(t = −2.330, −2.113, p = 0.029, 0.046)。正常对照组只有视网膜静脉有统计学意义的扩张(t = −2.629, p = 0.014),较刺激前扩张2.54%,视网膜动脉刺激后扩张1.60%,其差异无统计学意义(t = −1.613, p = 0.119)。FNS刺激在两组均没有引起眼压的明显波动。受检者FNS刺激前后眼部各参数的变化详见表2

Table 2. Changes of retinal blood oxygen saturation and vascular diameter after fastigial nuclear stimulation

表2. 小脑顶核电刺激后视网膜血氧饱和度和血管直径的变化

POAG,原发性开角型青光眼;SaO2,视网膜动脉血氧饱和度;SvO2,视网膜静脉血氧饱和度;AVD,视网膜血氧饱和度动静脉差。

4. 讨论

青光眼病人视神经的慢性缺血缺氧可能由下列原因导致:眼血流灌注不足,血管自动调节功能失调,血管内皮细胞功能障碍,血管系统无法克服升高的眼压等 [4] [5] [16] [17] [18] [19]。这些危险因素都有可能引起视网膜和视神经乳头的血氧供应障碍。视网膜血氧饱和度分析仪是一种新型的无创、非侵入性视网膜血氧测定技术。利用氧合血红蛋白和去氧血红蛋白对不同波长光照射的吸收率不同的特性,结合计算机图像分析技术,照取两种波长(577 nm和600 nm)下视网膜图像并组合处理后实现了对视网膜血氧饱和度的直接测定。利用该技术,已开展大量针对POAG患者视网膜血氧饱和度的探索和研究,并证实了POAG患者视网膜缺血、缺氧及代谢的异常 [20] - [26]。因此,增加血液灌注和血氧供应的药物和治疗有利于青光眼的视神经保护治疗。

小脑顶核位于第四脑室顶部,呈卵圆形,大小约10 mm × 5 mm。小脑顶核内有肾上腺素能的固有神经元及许多神经纤维束穿过。电刺激小脑顶核可兴奋过路神经纤维,引起反射性血管扩张,增加脑部血流,从而改善脑部缺血区脑血流量,减轻缺血性脑损害 [6] [9] [27] [28]。除增加脑部血供外,FNS还被证实可通过降低病灶周围电兴奋性,抑制炎症反应,抑制神经细胞凋亡,促进神经再生等机制实现中枢神经源性神经保护作用 [29] [30] [31] [32]。目前,采用仿生物电,模拟实验性小脑顶核电刺激而研制的小脑电刺激仪(又称脑电仿生电刺激仪)已用于脑梗死等疾病的临床治疗,无负性事件报道 [33] [34] [35]。由于眼部血供来源于颈内动脉,而视神经和脑组织均起源于胚胎外胚层,是属于中枢神经的颅神经。视神经与脑组织从组织来源、胚胎发育和血液供应都十分相似 [36]。所以,FNS增加大脑血流量的同时也能改善眼部循环。杨晋等 [37] 在研究中发现电刺激人小脑顶核后在颈内动脉血流速度增加的同时,视盘血流量也有一定程度的增加。王军明等 [10] 已观察到FNS可诱导人视网膜血管扩张。张虹等 [11] 进行了FNS治疗缺血性眼病的临床观察,发现FNS可明显改善患者视功能,表现为视力增加、视野扩大、视网膜电图相应波幅增大等。丁爱东等 [12] 的实验证实电刺激大鼠小脑顶核对缺血再灌注所导致的视网膜组织损伤具有保护作用。目前还未见有关FNS对POAG患者的作用,以及对视网膜血氧饱和度影响的文献报道。

视网膜血流量和血氧供应会随着血管直径的扩张而增加 [38]。通过测量血管直径来推测视网膜血流的变化是目前国内外广泛报道的一种方法 [10] [39] [40]。本研究中,青光眼患者视网膜动脉直径扩张4.45%,理论上视网膜血氧供应也会随之增加。而我们使用Oxymap T1视网膜血氧饱和度分析仪对视网膜动脉血氧饱和度的测定证实了FNS可以使视网膜动脉血氧饱和度增高。因此,我们有理由相信FNS可通过反射性扩张血管,增加视网膜血液灌注和血氧供应,从而缓解POAG患者的缺血,有望起到视神经保护作用。

眼球通过神经性、代谢性、体液性等多种途径产生自动调节眼部灌注血流的功能:当血压和灌注压出现轻中度变化时,血管阻力可发生相应改变,而使组织血流量维持相对恒定 [41]。而POAG患者自动调节功能的异常有可能对增加眼部血流灌注的治疗反应与正常人群不同。在本研究,我们只测量了颞上动脉和静脉的血氧饱和度。在FNS刺激前,POAG患者组和正常对照组之间的基线SaO2,SvO2,以及AVD均没有差异。在实验中我们发现:FNS均引起两组受检者视网膜血管的变化,但程度不同。相对于正常对照组,POAG患者对FNS的反应更明显。只在POAG患者组SaO2刺激后有明显增加,同时,FNS使POAG患者视网膜动脉、静脉的直径都明显扩张。而在正常对照组,我们发现视网膜动脉和静脉的血氧饱和度均没有明显改变,血管的扩张也只发生在视网膜静脉。正常对照组视网膜动脉FNS刺激后不扩张可能是与视网膜血管存在足够的自身调节功能,即正常眼的视网膜血管在颈动脉供血变动的一定范围内保持相对稳定的状态有关。相反的,POAG患者视网膜动静脉都明显扩张则意味着视网膜血管自动调节的异常。视网膜血管血流灌注自动调节的确切机制尚未完全明确 [36] [42]。研究报道自动调节是为了适应视功能改变引起的代谢的异常,补偿变化的灌注压,并使眼球后的温度保持恒定 [43]。大量研究已发现:POAG患者随着病情进展,即使眼压正常,仍会发生血管自动调节灌注的功能异常,并且血管功能失调增加了视神经对眼内压力性损害的易感性 [44] [45]。本实验结果表明POAG患者的视网膜血管对FNS的反应强于正常对照,从另一个侧面支持上述POAG患者血液灌注自动调节异常的论点。

FNS在眼科领域的临床应用仍处于初级探索阶段,本次实验纳入病例数较少,FNS仅进行了单次干预,其对POAG患者临床效果还需更大样本及更多的前瞻性研究来探讨。其次,本研究评估的是FNS对单支血管的影响,因为没有血管密度及血流速度的数据,结果尚不能完全代替整个视网膜及视神经的血流灌注变化。第三,参与实验的青光眼患者使用的抗青光眼药物不同。复习文献可以发现,某些抗青光眼药物如噻吗洛尔、布林佐胺、碳酸酐酶抑制剂、拉坦前列素以及阿法根等有可能会影响视网膜血供 [20] [21] [43] [44],但目前文献报道可影响视网膜血氧饱和度的布林佐胺和碳酸酐酶抑制剂 [20] [21],在本组患者中并没有使用。

综上所述,FNS可以作用温和地扩张POAG患者视网膜动脉和静脉血管直径,并增加视网膜动脉血氧供应。为青光眼抗缺血保护视神经治疗提供了的新思路。但FNS的最佳治疗剂量、分子水平的作用机理,还需在后续的大规模临床实验和动物实验中进一步探讨和研究。

参考文献

[1] 唐静, 邓应平, 王琼, 等. 原发性开角型青光眼发病机制的研究进展[J]. 眼科新进展, 2020, 40(6): 587-592.
[2] Satilmis, M., Orgul, S., Doubler, B., et al. (2003) Rate of Progression of Glaucoma Correlates with Retrobulbar Circulation and Intraocular Pressure. American Journal of Ophthalmology, 135, 664-669.
https://doi.org/10.1016/S0002-9394(02)02156-6
[3] Galassi, F., Sodi, A., Ucci, F., et al. (2003) Ocular Hemodynamics and Glaucoma Prognosis: A Color Doppler Imaging Study. Archives of Ophthalmology, 121, 1711-1715.
https://doi.org/10.1001/archopht.121.12.1711
[4] Jia, Y., Morrison, J.C., Tokayer, J., et al. (2012) Quantitative OCT Angiography of Optic Nerve Head Blood Flow. Biomedical Optics Express, 3, 3127-3137.
https://doi.org/10.1364/BOE.3.003127
[5] Jia, Y., Wei, E., Wang, X., et al. (2014) Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma. Ophthalmology, 121, 1322-1332.
https://doi.org/10.1016/j.ophtha.2014.01.021
[6] Wang, J., Dong, W.W., Zhang, W.H., et al. (2014) Electrical Stimulation of Cerebellar Fastigial Nucleus: Mechanism of Neuroprotection and Prospects for Clinical Application against Cerebral Ischemia. CNS Neuroscience & Therapeutics, 20, 710-716.
https://doi.org/10.1111/cns.12288
[7] Doba, N. and Reis, D.J. (1972) Changes in Regional Blood Flow and Cardiodynamics Evoked by Electrical Stimulation of the Fastigial Nucleus in the Cat and Their Similarity to Orthostatic Reflexes. The Journal of Physiology, 227, 729-747.
https://doi.org/10.1113/jphysiol.1972.sp010056
[8] Nakai, M., Iadecola, C. and Reis, D.J. (1982) Global Cerebral Vasodilation by Stimulation of Rat Fastigial Cerebellar Nucleus. The American Journal of Physiology, 243, H226-H235.
https://doi.org/10.1152/ajpheart.1982.243.2.H226
[9] Golanov, E.V. and Reis, D.J. (1996) Cerebral Cortical Neurons with Activity Linked to Central Neurogenic Spontaneous and Evoked Elevations in Cerebral Blood Flow. Neuroscience Letters, 209, 101-104.
https://doi.org/10.1016/0304-3940(96)12611-2
[10] 王军明, 张虹. 电刺激人小脑顶核对视网膜血管直径的影响[J]. 眼科新进展, 2003, 23(4): 262-263.
[11] 张虹, 王红. 电刺激小脑顶核治疗缺血性眼病的疗效观察[J]. 华中科技大学学报(医学版), 2002, 31(4): 448-450.
[12] 丁爱东, 张虹, 王军明. 电刺激大鼠小脑顶核对视网膜缺血再灌注损伤的保护作用[J]. 中华眼科杂志, 2004, 40(6): 400-403.
[13] Feke, G.T., Tagawa, H., Deupree, D.M., et al. (1989) Blood Flow in the Normal Human Retina. Investigative Ophthalmology & Visual Science, 30, 58-65.
[14] Geirsdottir, A., Hardarson, S.H., Olafsdottir, O.B., et al. (2014) Retinal Oxygen Metabolism in Exudative Age-Related Macular Degeneration. Acta Ophthalmologica, 92, 27-33.
https://doi.org/10.1111/aos.12294
[15] Geirsdottir, A., Palsson, O., Hardarson, S.H., et al. (2012) Retinal Vessel Oxygen Saturation in Healthy Individuals. Investigative Ophthalmology & Visual Science, 53, 5433-5442.
https://doi.org/10.1167/iovs.12-9912
[16] Schmetterer, L. and Polak, K. (2001) Role of Nitric Oxide in the Control of Ocular Blood Flow. Progress in Retinal and Eye Research, 20, 823-847.
https://doi.org/10.1016/S1350-9462(01)00014-3
[17] Resch, H., Garhofer, G., Fuchsjager-Mayrl, G., et al. (2009) Endothelial Dysfunction in Glaucoma. Acta Ophthalmologica, 87, 4-12.
https://doi.org/10.1111/j.1755-3768.2007.01167.x
[18] Joos, K.M., Kay, M.D., Pillunat, L.E., et al. (1999) Effect of Acute Intraocular Pressure Changes on Short Posterior Ciliary Artery Haemodynamics. British Journal of Ophthalmology, 83, 33-38.
https://doi.org/10.1136/bjo.83.1.33
[19] Pillunat, L.E., Anderson, D.R., Knighton, R.W., et al. (1997) Autoregulation of Human Optic Nerve Head Circulation in Response to Increased Intraocular Pressure. Experimental Eye Research, 64, 737-744.
https://doi.org/10.1006/exer.1996.0263
[20] Traustason, S., Hardarson, S.H., Gottfredsdottir, M.S., et al. (2009) Dorzolamide-Timolol Combination and Retinal Vessel Oxygen Saturation in Patients with Glaucoma or Ocular Hypertension. British Journal of Ophthalmology, 93, 1064-1067.
https://doi.org/10.1136/bjo.2008.148460
[21] Siesky, B., Harris, A., Cantor, L.B., et al. (2008) A Comparative Study of the Effects of Brinzolamide and Dorzolamide on Retinal Oxygen Saturation and Ocular Microcirculation in Patients with Primary Open-Angle Glaucoma. British Journal of Ophthalmology, 92, 500-504.
https://doi.org/10.1136/bjo.2007.125187
[22] Vandewalle, E., Abegao Pinto, L., Olafsdottir, O.B., et al. (2014) Oximetry in Glaucoma: Correlation of Metabolic Change with Structural and Functional Damage. Acta Ophthalmologica, 92, 105-110.
https://doi.org/10.1111/aos.12011
[23] Ramm, L., Jentsch, S., Peters, S., et al. (2015) Dependence of Diameters and Oxygen Saturation of Retinal Vessels on Visual Field Damage and Age in Primary Open-Angle Glaucoma. Acta Ophthalmologica, 94, 276-281.
[24] Ramm, L., Jentsch, S., Peters, S., et al. (2014) Investigation of Blood Flow Regulation and Oxygen Saturation of the Retinal Vessels in Primary Open-Angle Glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1803-1810.
https://doi.org/10.1007/s00417-014-2766-4
[25] Olafsdottir, O.B., Hardarson, S.H., Gottfredsdottir, M.S., et al. (2011) Retinal Oximetry in Primary Open-Angle Glaucoma. Investigative Ophthalmology & Visual Science, 52, 6409-6413.
https://doi.org/10.1167/iovs.10-6985
[26] Michelson, G. and Scibor, M. (2006) Intravascular Oxygen Saturation in Retinal Vessels in Normal Subjects and Open-Angle Glaucoma Subjects. Acta Ophthalmologica Scandinavica, 84, 289-295.
https://doi.org/10.1111/j.1600-0420.2005.00631.x
[27] Yamamoto, S., Golanov, E.V. and Reis, D.J. (1993) Reductions in Focal Ischemic Infarctions Elicited from Cerebellar Fastigial Nucleus Do Not Result from Elevations in Cerebral Blood Flow. Journal of Cerebral Blood Flow & Metabolism, 13, 1020-1024.
https://doi.org/10.1038/jcbfm.1993.128
[28] Miura, M. and Reis, D.J. (1969) Cerebellum: A Pressor Response Elicited from the Fastigial Nucleus and Its Efferent Pathway in Brainstem. Brain Research, 13, 595-599.
https://doi.org/10.1016/0006-8993(69)90269-8
[29] Golanov, E.V. and Reis, D.J. (1999) Neuroprotective Electrical Stimulation of Cerebellar Fastigial Nucleus Attenuates Expression of Periinfarction Depolarizing Waves (PIDs) and Inhibits Cortical Spreading Depression. Brain Research, 818, 304-315.
https://doi.org/10.1016/S0006-8993(98)01169-X
[30] Glickstein, S.B., Golanov, E.V. and Reis, D.J. (1999) Intrinsic Neurons of Fastigial Nucleus Mediate Neurogenic Neuroprotection against Excitotoxic and Ischemic Neuronal Injury in Rat. Journal of Neuroscience, 19, 4142-4154.
https://doi.org/10.1523/JNEUROSCI.19-10-04142.1999
[31] Zheng, Z., Kim, J.Y., Ma, H., et al. (2008) Anti-Inflammatory Effects of the 70 kDa Heat Shock Protein in Experimental Stroke. Journal of Cerebral Blood Flow & Metabolism, 28, 53-63.
https://doi.org/10.1038/sj.jcbfm.9600502
[32] Zhou, H., Wang, J., Jiang, J., et al. (2014) N-Acetyl-Serotonin Offers Neuroprotection through Inhibiting Mitochondrial Death Pathways and Autophagic Activation in Experimental Models of Ischemic Injury. Journal of Neuroscience, 34, 2967-2978.
https://doi.org/10.1523/JNEUROSCI.1948-13.2014
[33] 徐翔. 小脑通电治疗在脑血管疾病康复中的效果评价[J]. 检验医学与临床, 2010(7): 1318-1321.
[34] Shen, H.Q. (2009) Cerebral Circulation Function Therapeutic Apparatus of the Role of the Mechanism and Clinical Effect. Progress in Biomedical Engineering, 30, 245-246.
[35] He, W.Y., Li, B.P. and Huang, X.Z. (2003) Clinical Observation of Treatment of Acute Cerebral Infarction by Electrical Stimulation of the Fastigial Nucleus. Journal of Apoplexy and Nervous Diseases, 20, 470.
[36] Nakahara, T., Mori, A., Kurauchi, Y., et al. (2013) Neurovascular Interactions in the Retina: Physiological and Pathological Roles. Journal of Pharmacological Sciences, 123, 79-84.
https://doi.org/10.1254/jphs.13R03CP
[37] 杨晋, 陆云峰, 诸仁远. 刺激小脑顶核对青少年近视眼调节影响的初步探讨[J]. 眼科新进展, 2002, 22(5): 325-327.
[38] Hammer, M., Vilser, W., Riemer, T., et al. (2011) Retinal Venous Oxygen Saturation Increases by Flicker Light Stimulation. Investigative Ophthalmology & Visual Science, 52, 274-277.
https://doi.org/10.1167/iovs.10-5537
[39] Grunwald, J.E., Metelitsina, T. and Grunwald, L. (2002) Effect of Sildenafil Citrate (Viagra) on Retinal Blood Vessel Diameter. American Journal of Ophthalmology, 133, 809-812.
https://doi.org/10.1016/S0002-9394(02)01391-0
[40] Grunwald, J.E., DuPont, J. and Dreyer, E.B. (1997) Effect of Chronic Nitrate Treatment on Retinal Vessel Caliber in Open-Angle Glaucoma. American Journal of Ophthalmology, 123, 753-758.
https://doi.org/10.1016/S0002-9394(14)71123-7
[41] 应希, 阴正勤, 王一. 青光眼发病机制与视乳头微循环障碍[J]. 国外医学眼科学分册, 2002, 26(3): 143-146.
[42] Grieshaber, M.C., Mozaffarieh, M. and Flammer, J. (2007) What Is the Link between Vascular Dysregulation and Glaucoma? Survey of Ophthalmology, 52, S144-S154.
https://doi.org/10.1016/j.survophthal.2007.08.010
[43] Delaey, C. and Van De Voorde, J. (2000) Regulatory Mechanisms in the Retinal and Choroidal Circulation. Ophthalmic Research, 32, 249-256.
https://doi.org/10.1159/000055622
[44] Gherghel, D., Orgul, S., Gugleta, K., et al. (2000) Relationship between Ocular Perfusion Pressure and Retrobulbar Blood Flow in Patients with Glaucoma with Progressive Damage. American Journal of Ophthalmology, 130, 597-605.
https://doi.org/10.1016/S0002-9394(00)00766-2
[45] Grieshaber, M.C. and Flammer, J. (2005) Blood Flow in Glaucoma. Current Opinion in Ophthalmology, 16, 79-83.
https://doi.org/10.1097/01.icu.0000156134.38495.0b