儿童骨肉瘤幸存者心血管事件评估与防治
Assessment and Prevention of Cardiovascular Events in Pediatric Osteosarcoma Survivors
DOI: 10.12677/ACM.2020.1012434, PDF, HTML, XML, 下载: 415  浏览: 597  科研立项经费支持
作者: 朱文婷, 张红梅:空军军医大学第一附属医院肿瘤科,陕西 西安
关键词: 骨肉瘤儿童化疗心血管事件Osteosarcoma Children Chemotherapy Cardiovascular Event
摘要: 骨肉瘤是儿童常见恶性肿瘤之一,其恶性程度高,易出现肺转移,既往经单纯手术治疗5年生存率不佳。随着多种化疗药物的应用及“术前新辅助化疗+保肢手术+术后辅助化疗”治疗模式的开展,儿童骨肉瘤治愈率明显提高、生存期大幅延长,随之而来骨肉瘤幸存儿童因化疗所致的心血管不良事件发生率和死亡率均急剧增高,成为威胁儿童骨肉瘤幸存者的最大问题。本文针对儿童骨肉瘤治疗中常用化疗药物心脏毒性进行分析并对儿童骨肉瘤幸存者心血管事件评估及防治策略进行综述。
Abstract: Osteosarcoma is one of the most common malignant tumors in children. It has a high degree of malignancy and is prone to pulmonary metastasis. The 5-year survival rate after simple surgical treatment is poor. As the applications of a variety of chemotherapeutic drugs and neoadjuvant chemotherapy plus limb-salvage surgery plus adjuvant chemotherapy, the cure rate and survival time of children with osteosarcoma have been significantly increased, followed by a sharp increase in the incidence of cardiovascular adverse events and mortality caused by chemotherapy in surviving children with osteosarcoma, which has become the biggest problem threatening the survivors of children with osteosarcoma. This article analyzes the cardiotoxicity of chemotherapy drugs commonly used in the treatment of pediatric osteosarcoma and reviews the assessment of cardiovascular events and prevention strategies for pediatric osteosarcoma survivors.
文章引用:朱文婷, 张红梅. 儿童骨肉瘤幸存者心血管事件评估与防治[J]. 临床医学进展, 2020, 10(12): 2868-2874. https://doi.org/10.12677/ACM.2020.1012434

1. 前言

骨肉瘤发病与年龄相关,大多发生于20岁以前的青春期成长阶段,少部分发生于60岁以后 [1]。在新发儿童恶性肿瘤中约占5% [2],是除白血病和淋巴瘤外最常见的儿童恶性肿瘤。

儿童骨肉瘤恶性程度高,起初可有疼痛症状,但因疼痛症状间断出现、症状不典型,经常被误认为青春期生长痛而耽误早期诊断时机,80%患儿诊断骨肉瘤时已同时出现远处转移 [3],以肺转移癌最为多见 [4]。对于不可切除、原发转移的骨肉瘤患儿,仅能接受内科化疗,5年生存率低于20% [4]。

无远处转移的可切除骨肉瘤,在上世纪70年代前,标准治疗方案为外科截肢手术,即使接受手术,约70%~80%的患者仍会出现复发转移,术后5年生存率不容乐观 [5] [6]。随着多柔比星、大剂量甲氨蝶呤联合四氢叶酸、顺铂、异环磷酰胺和长春新碱等化疗药物相继应用于骨肉瘤术前新辅助化疗、术后辅助化疗及解救治疗,使得微小转移病灶得到控制和杀灭,延迟肺转移出现时间,延长患者生存期 [7]。术前新辅助化疗+保肢手术+术后辅助化疗的治疗模式,已取代传统截肢手术,改善患者生活质量,并使骨肉瘤术后5年生存率升至约70% [4]。

2. 儿童骨肉瘤化疗常用药物及心脏毒性

针对儿童骨肉瘤,目前临床最常用化疗药物包括:多柔比星、大剂量甲氨蝶呤、顺铂和异环磷酰胺 [8] [9],二线及以上药物包括依托泊苷、多西他赛、吉西他滨、环磷酰胺、卡铂、拓扑替康、瑞戈非尼、索拉非尼、依维莫司等 [10]。治疗药物的发展、方案的改进使临床治疗获益,也使儿童骨肉瘤患者生存期大幅延长,幸存儿童心血管不良事件发生率和死亡率急剧增高成为威胁儿童骨肉瘤幸存者的最大问题。研究表明恶性肿瘤幸存者心血管事件的发生风险是非肿瘤人群的2倍,且伴有任何心血管疾病高危因素的幸存者,其治疗相关心脏毒性的发生率将显著提高。已发生心血管事件的幸存者,其死亡风险是未发生人群的11倍 [11]。因此,长期幸存的儿童骨肉瘤患者防治化疗药物所致的心脏毒性尤为重要。

2.1. 多柔比星

多柔比星属于蒽环类化疗药物,是最早用于骨肉瘤一线治疗的化疗药物之一,疗效确切,是骨肉瘤化疗的基石。但多柔比星也是报道最多、最易引起心脏毒性的药物。其存在剂量累积相关心脏毒性 [12],接受多柔比星化疗累积剂量分别达400 mg/m2,550 mg/m2及700 mg/m2时,充血性心衰发生率至少达到3%,7%和18% [13],因此美国心脏病学协会推荐多柔比星化疗累积使用剂量一般不超过550 mg/m2,否则心血管疾病相关事件发生率将显著增高。也有研究表明即使低剂量蒽环类药物亦可引发心血管事件 [14]。蒽环类药物未达到最大累积剂量时,也可引发心功能异常,提示蒽环类药物在体内代谢具有个体差异,表明蒽环类药物并无所谓的“安全剂量”。长期幸存患者是否出现心血管事件与多个高危因素相关,包括:大剂量使用多柔比星、女性、高龄、既往心血管疾病史和纵隔区放疗史。同样,合并用药也可以影响心血管事件的发生率,多柔比星单药导致心衰的发生率为0%~1.6%,若序贯或联合紫杉类药物,心衰发生率将增至2.1% [15]。

接受多柔比星治疗的幸存者,其无症状性心脏结构或功能异常,较有症状性心血管事件更为常见 [16]。根据心血管事件发生时间的不同可将多柔比星导致的心脏毒性分为急性、亚急性和慢性三种。急性心脏毒性通常发生于给药过程中或给药后数小时,多表现为心律失常和心电图变化,如:非特异性ST-T改变,QRS低电压,窦性心动过速或过缓,Q-T间期延长等 [17],急性心肌缺血发生率较低。大多数急性心脏毒性是可逆的,目前被认为是心肌水肿的结果。亚急性毒性常发生于停止治疗后的第一年,临床表现与急性心脏毒性相似,但发生率远低于急性心脏毒性 [18]。慢性心脏毒性发生于治疗结束后的一年甚至几十年,可以表现为:冠状动脉疾病、中风、心源性猝死、充血性心力衰竭和心肌病等 [19],多为不可逆改变,可有心脏增大、S-T段改变、左室射血分数降低等表现,一旦发展至心衰,死亡率高达50% [20]。

蒽环类药物导致心血管事件的发生可能与心肌细胞凋亡、坏死相关,这种改变是不可逆的;也可能与药物导致心肌细胞功能障碍相关,这种改变是可逆的。目前蒽环类药物导致以上改变的具体机制尚不明确,既往研究表明主要与氧化应激相关:蒽环类药物在代谢过程中产生过氧化氢、羟自由基和超氧阴离子等活性氧,诱导心肌细胞一氧化氮合成增加,并与细胞内铁离子发生螯合反应,激活铁介导的活性氧产生,这些均导致心肌细胞内氧化应激反应增强,而心肌细胞中过氧化物酶水平较低,不能及时清除蒽环类药物产生的活性氧自由基和超氧化物,可直接造成心肌损伤甚至凋亡;活性氧还可以造成心肌细胞及细胞器损伤,线粒体脂质过氧化损伤线粒体功能,心肌供能异常;导致钙离子从线粒体及肌浆网中流出,细胞内钙离子水平增加造成钙超载;此外,多柔比星还可通过与拓扑异构酶2β (Top2β)结合形成复合物诱导心肌细胞死亡,Top2β也被认为是多柔比星诱导的心血管事件的主要分子靶点之一 [21] [22] [23] [24]。

2.2. 顺铂

顺铂也是骨肉瘤治疗中常用的药物,除了其常见的消化道毒性、耳毒性、肾毒性外,心脏毒性也时有发生,可因顺铂直接对心肌造成损伤,产生心律失常、ST-T改变、心肌缺血、心绞痛、心肌梗死、舒张障碍、心衰、心包炎等心脏不良事件,也可能继发于顺铂肾毒性引起的离子紊乱 [25] [26] [27]。顺铂治疗后骨肉瘤幸存患儿发生远期心血管疾病的风险有所增加。

2.3. 异环磷酰胺

异环磷酰胺引发心脏毒性较为少见。有报道显示,大剂量异环磷酰胺可损伤心肌毛细血管,使血管内细胞毒药物及代谢产物外渗至心肌组织内,损伤心肌细胞,导致心功能障碍,表现为呼吸困难、肺水肿、心律失常和充血性心力衰竭 [28],心电图可出现QRS波减少、ST段升高及T波倒置等。

2.4. 环磷酰胺

低剂量环磷酰胺耐受性良好,而大剂量环磷酰胺(120~170 mg/kg/周)可诱发急性暴发型充血性心力衰竭(CHF),其发生率高达28%。临床表现为心包炎、心律失常,心电图提示QRS波群幅度降低、ST段抬高及T波倒置 [29]。其机制尚未完全明确,但研究证实环磷酰胺与蒽环类药物联合或序贯使用时心血管事件发生风险将会增加。

3. 儿童骨肉瘤幸存者心血管事件的早期发现和监测

有学者认为化疗药物引发的心功能异常是持续存在且不断恶化的过程,应及早监测、发现并予以干预 [30]。常用检查手段包括:超声心动图、心电图和心血管事件相关血清学标志物检测。

3.1. 超声心动图

传统超声心动图是应用最为广泛的心功能监测手段。通过检测左室射血分数可反应心脏输出功能,但对于早期隐匿性心血管事件并不敏感,不能用于指导临床用药调整并预防严重的心血管事件发生 [31]。随着超声技术革新,多普勒超声成像系统、三维斑点追踪成像技术及实时三维超声成像等为早期检测亚临床心功能改变提供可能,与传统的左室射血分数检测相比,前者敏感性及有效率大大提高 [32],但仍需大样本临床研究进一步验证。

3.2. 心电图

心电图简便、易行,患者出现不适症状可及时检查,能发现心律失常、传导阻滞、心肌缺血和心梗等心血管事件。

3.3. 心血管事件相关血清学标志物检测

肌钙蛋白是最常用的心血管事件相关血清学标志物,可特异且敏感检测心肌损伤,为早期诊断药物相关心血管事件提供依据。其具有特异性强、敏感性高、可重复检测的优点,相较于其他检测指标更为方便可行,而且药物性心脏损伤血清肌钙蛋白升高远早于左室射血分数下降 [33] [34],利于心功能异常早期发现,为后续临床决策提供依据。骨肉瘤化疗儿童,检测血清肌钙蛋白有以下四点意义:① 更早的发现存在左室功能进行性紊乱的风险;② 预测远期可能出现的严重心血管事件;③ 可根据肌钙蛋白变化调整后续化疗药物,防止严重心血管事件发生;④ 筛选出化疗诱发心血管事件的高危患者,早期给予心脏保护治疗,预防致死性心血管事件的发生 [33]。

4. 儿童骨肉瘤幸存者心血管事件的防治

4.1. 右丙亚胺对蒽环类药物所致心血管事件的保护作用

右丙亚胺是唯一证实可预防蒽环类药物导致心血管事件的保护剂。它可与游离铁结合,并可置换出与蒽环类药物螯合的三价铁,从而干预铁介导的活性氧自由基产生,减少蒽环类药物导致的心脏毒性 [35] [36],也可通过保护线粒体转录减轻蒽环类药物所致的心脏毒性 [37]。含多柔比星联合治疗方案中应用右丙亚胺,同样具有保护心肌的作用 [38]。儿童骨肉瘤患者接受蒽环类药物同时应用右丙亚胺,可保证蒽环类药物密集化疗的顺利进行、减少心血管事件发生,且不影响疗效,不增加第二肿瘤的发生风险 [39] [40]。目前,NCCN指南已将右丙亚胺列入蒽环类药物的合并用药中,推荐应用于预防心脏不良事件发生。

4.2. 其他心脏损伤预防策略

一些临床前或小样本临床研究探索了一些具有潜在心脏保护作用的药物,包括他汀类药物、血管紧张素转换酶抑制剂(ACEI)、钙通道阻滞剂、血管紧张素受体抑制剂和β-受体抑制剂等。上述药物通常用于治疗心衰、左室功能紊乱、高血压等疾病。研究发现依那普利(ACEI)能推迟幸存者心脏毒性的发生时间,但不能直接阻止心血管事件的发生 [13]。

也有研究显示,改变蒽环类药物剂型,如将多柔比星更换为脂质体阿霉素,能降低局部心肌细胞内多柔比星的浓度,减轻心肌细胞损伤。调整多柔比星输注方式,将一次性输注改为持续泵注,可有效降低血药浓度峰值,预防及减轻心血管事件 [41]。

4.3. 儿童骨肉瘤幸存者化疗所致心脏疾病的治疗

随着儿童骨肉瘤治疗有效率的不断提高,越来越多的儿童实现了长期生存,越来越多的幸存者出现了多柔比星所致的心血管事件,一旦出现通常为不可逆的心脏损伤,且持续进展,直至致死性心脏事件的发生 [36],只有采取及时有效的治疗措施才能改善幸存者的生存质量。目前,多柔比星所致的心血管事件,仍无达成共识的治疗方法。没有证据表明传统治疗心衰或高血压的药物在多柔比星所致的心血管事件中具有一致的疗效,也无充分证据能表明其对患者总生存有益 [36]。

5. 小结与展望

随着手术技能的发展、化疗药物进步,儿童骨肉瘤患者生存期逐渐延长,幸存者出现化疗相关心血管事件的发生率和致死率逐渐攀升。为进一步攻克这些难题,可从以下几个方面进行研究:① 改变药物剂型及给药方法,在确保疗效的情况下降低毒性作用,如开发新型纳米载体结合细胞毒药物等;② 寻找敏感性更高、特异性更强的心脏损伤标志物,开发更为灵敏的超声、核素、造影等检查技术,用于更早的发现无症状、亚临床的心血管事件,以便及早干预;③ 针对应用具有心血管损伤化疗药物治疗的患者,开展大样本临床研究,寻找能预防或治疗急性、亚急性和慢性心血管事件的药物,为临床治疗提供充分证据。

基金项目

空军军医大学西京医院学科助推重点项目(XJZT18MDT18)。

参考文献

[1] Mirabello, L., Troisi, R.J. and Savage, S.A. (2009) Osteosarcoma Incidence and Survival Rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115, 1531-1543.
https://doi.org/10.1002/cncr.24121
[2] Wang, Y., Zhang, Y., Yang, T., et al. (2017) Long Non-Coding RNA MALAT1 for Promoting Metastasis and Proliferation by Acting as a ceRNA of miR-144-3p in Osteosarcoma Cells. Oncotarget, 31, 59417-59434.
https://doi.org/10.18632/oncotarget.19727
[3] Zhang, C.L., Zhu, K.P., Shen, G.Q., et al. (2016) A Long Non-Coding RNA Contributes to Doxorubicin Resistance of Osteosarcoma. Tumor Biology, 37, 2737-2748.
https://doi.org/10.1007/s13277-015-4130-7
[4] Harrison, D.J., Geller, D.S., Gill, J.D., et al. (2018) Current and Future Therapeutic Approaches for Osteosarcoma. Expert Review of Anticancer Therapy, 18, 39-50.
https://doi.org/10.1080/14737140.2018.1413939
[5] Ferrari, S. and Palmerini, E. (2007) Adjuvant and Neoadjuvant Combination Chemotherapy for Osteogenic Sarcoma. Current Opinion in Oncology, 19, 341-346.
https://doi.org/10.1097/CCO.0b013e328122d73f
[6] Arndt, C.A., Rose, P.S., Folpe, A.L., et al. (2012) Common Musculoskeletal Tumors of Childhood and Adolescence. Mayo Clinic Proceedings, 87, 475-487.
https://doi.org/10.1016/j.mayocp.2012.01.015
[7] Link, M.P., Goorin, A.M., Miser, A.W., et al. (1986) The Effect of Adjuvant Chemotherapy on Relapse-Free Survival in Patients with Osteosarcoma of the Extremity. New England Journal of Medicine, 314, 1600-1606.
https://doi.org/10.1056/NEJM198606193142502
[8] Meyers, P.A., Schwartz, C.L., Krailo, M.D., et al. (2008) Osteosarcoma: The Addition of Muramyl Tripeptide to Chemotherapy Improves Overall Survival—A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 1, 633-638.
https://doi.org/10.1200/JCO.2008.14.0095
[9] Longhi, A., Ferrari, S., Bacci, G., et al. (2007) Long-Term Follow-Up of Patients with Doxorubicin-Induced Cardiac Toxicity after Chemotherapy for Osteosarcoma. Anticancer Drugs, 18, 737-744.
https://doi.org/10.1097/CAD.0b013e32803d36fe
[10] Biermann, J.S., Chow, W., Reed, D.R., et al. (2017) NCCN Guidelines Insights: Bone Cancer, Version 2.2017. Journal of the National Comprehensive Cancer Network, 15, 155-167.
https://doi.org/10.6004/jnccn.2017.0017
[11] Chao, C., Xu, L., Bhatia, S., et al. (2016) Cardiovascular Disease Risk Profiles in Survivors of Adolescent and Young Adult (AYA) Cancer: The Kaiser Permanente AYA Cancer Survivors Study. Journal of Clinical Oncology, 34, 1626-1633.
https://doi.org/10.1200/JCO.2015.65.5845
[12] Lipshultz, S.E., Franco, V.I., Miller, T.L., et al. (2015) Cardiovascular Disease in Adult Survivors of Childhood Cancer. Annual Review of Medicine, 66, 161-176.
https://doi.org/10.1146/annurev-med-070213-054849
[13] Wouters, K.A., Kremer, L.C., Miller, T.L., et al. (2005) Protecting against Anthracycline-Induced Myocardial Damage: A Review of the Most Promising Strategies. British Journal of Haematology, 131, 561-578.
https://doi.org/10.1111/j.1365-2141.2005.05759.x
[14] Ganame, J., Claus, P., Uyttebroeck, A., et al. (2007) Myocardial Dysfunction Late after Low-Dose Anthracycline Treatment in Asymptomatic Pediatric Patients. Journal of the American Society of Echocardiography, 20, 135l-1358.
https://doi.org/10.1016/j.echo.2007.04.007
[15] Jones, L.W., Haykowsky, M.J., Swartz, J.J., et al. (2007) Early Breast Cancer Therapy and Cardiovascular Injury. Journal of the American College of Cardiology, 50, 1435-1441.
https://doi.org/10.1016/j.jacc.2007.06.037
[16] Carver, J.R., Szalda, D. and Ky, B. (2013) Asymptomatic Cardiac Toxicity in Long-Term Cancer Survivors: Defining the Population and Recommendations for Surveillance. Seminars in Oncology, 40, 229-238.
https://doi.org/10.1053/j.seminoncol.2013.01.005
[17] Volkova, M. and Russell, R. (2011) Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Current Cardiology Reviews, 7, 214-220.
https://doi.org/10.2174/157340311799960645
[18] Hengel, C.L., Russell, P.A., Gould, P.A., et al. (2006) Subacute Anthracycline Cardiotoxicity. Heart, Lung and Circulation, 15, 59-61.
https://doi.org/10.1016/j.hlc.2005.06.003
[19] Lindsey, M.L., Lange, R.A., Parsons, H., et al. (2014) The Tell-Tale Heart: Molecular and Cellular Responses to Childhood Anthracycline Exposure. American Journal of Physiology: Heart and Circulatory Physiology, 307, 1379-1389.
https://doi.org/10.1152/ajpheart.00099.2014
[20] Chatterjee, K., Zhang, J., Honbo, N., et al. (2010) Doxorubicin Cardiomyopathy. Cardiology, 115, 155-162.
https://doi.org/10.1159/000265166
[21] Gilliam, L.A., Moylan, J.S., Patterson, E.W., et al. (2012) Doxorubicin Acts via Mitochondrial ROS to Stimulate Catabolism in C2C12 Myotubes. American Journal of Physiology-Cell Physiology, 302, 195-202.
https://doi.org/10.1152/ajpcell.00217.2011
[22] Damiani, R.M., Moura, D.J., Viau, C.M., et al. (2016) Pathways of Cardiac Toxicity: Comparison between Chemotherapeutic Drugs Doxoru-Bicin and Mitoxantrone. Archives of Toxicology, 90, 2063-2076.
https://doi.org/10.1007/s00204-016-1759-y
[23] Cascales, A., Sánchez-Vega, B., Navarro, N., et al. (2012) Clinical and Genetic Determinants of Anthracycline-Induced Cardiac Iron Accumulation. International Journal of Cardiology, 154, 282-286.
https://doi.org/10.1016/j.ijcard.2010.09.046
[24] Koleini, N. and Kardami, E. (2017) Autophagy and Mitophagy in the Context of Doxorubicin-Induced Cardiotoxicity. Oncotarget, 8, 46663-46680.
https://doi.org/10.18632/oncotarget.16944
[25] Oun, R. and Rowan, E. (2017) Cisplatin Induced Arrhythmia; Electrolyte Imbalance or Disturbance of the SA Node? European Journal of Pharmacology, 15, 125-128.
https://doi.org/10.1016/j.ejphar.2017.05.063
[26] Patane, S. (2014) Cardiotoxicity: Cisplatin and Long-Term Cancer Survivors. International Journal of Cardiology, 175, 201-202.
https://doi.org/10.1016/j.ijcard.2014.04.238
[27] El-Awady, el-S.E., Moustafa, Y.M., Abo-Elmatty, D.M., et al. (2011) Cisplatin-Induced Cardiotoxicity: Mechanisms and Cardioprotective Strategies. European Journal of Pharmacology, 650, 335-341.
https://doi.org/10.1016/j.ejphar.2010.09.085
[28] Trippett, T.M., Schwartz, C.L., Guillerman, R.P., et al. (2015) Ifosfamide and Vinorelbine Is an Effective Reinduction Regimen in Children with Refractory/Relapsed Hodgkin Lymphoma, AHOD00P1: A Children’s Oncology Group Report. Pediatric Blood & Cancer, 62, 60-64.
https://doi.org/10.1002/pbc.25205
[29] Cardinale, D., Bacchiani, G., Beggiato, M., et al. (2013) Strategies to Prevent and Treat Cardiovascular Risk in Cancer Patients. Seminars in Oncology, 40, 186-198.
https://doi.org/10.1053/j.seminoncol.2013.01.008
[30] Curigliano, G., Cardinale, D., Dent, S., et al. (2016) Cardiotoxicity of Anticancer Treatments: Epidemiology, Detection, and Management. CA: A Cancer Journal for Clinicians, 66, 309-325.
https://doi.org/10.3322/caac.21341
[31] Thavendiranathan, P., Poulin, F., Lim, K.D., et al. (2014) Use of Myocardial Strain Imaging by Echocardiography for the Early Detection of Cardiotoxicity in Patients during and after Cancer Chemotherapy: A Systematic Review. Journal of the American College of Cardiology, 63, 2751-2768.
https://doi.org/10.1016/j.jacc.2014.01.073
[32] Cardinale, D., Salvatici, M. and Sandri, M.T. (2011) Role of Biomarkers in Cardioncology. Clinical Chemistry and Laboratory Medicine, 49, 1937-1948.
https://doi.org/10.1515/CCLM.2011.692
[33] Christenson, E.S., James, T., Agrawal, V., et al. (2015) Use of Biomarkers for the Assessment of Chemotherapy-Induced Cardiac Toxicity. Clinical Biochemistry, 48, 223-235.
https://doi.org/10.1016/j.clinbiochem.2014.10.013
[34] Hochster, H.S. (1998) Clinical Pharmacology of Dexrazoxane. Seminars in Oncology, 25, 37-42.
[35] Lipshultz, S.E., Cochran, T.R., Franco, V.I., et al. (2013) Treatment-Related Cardiotoxicity in Survivors of Childhood Cancer. Nature Reviews Clinical Oncology, 10, 697-710.
https://doi.org/10.1038/nrclinonc.2013.195
[36] Vijay, V., Moland, C.L., Han, T., et al. (2016) Early Transcriptional Changes in Cardiac Mitochondria during Chronic Doxorubicin Exposure and Mitigation by Dexrazoxane in Mice. Toxicology and Applied Pharmacology, 295, 68-84.
https://doi.org/10.1016/j.taap.2016.02.003
[37] Hasinoff, B.B., Patel, D. and Wu, X. (2017) Molecular Mechanisms of the Cardiotoxicity of the Proteasomal-Targeted Drugs Bortezomib and Carfilzomib. Cardiovascular Toxicology, 17, 237-250.
https://doi.org/10.1007/s12012-016-9378-7
[38] Ebb, D., Meyers, P., Grier, H., et al. (2012) Phase II Trial of Trastuzumab in Combination with Cytotoxic Chemotherapy for Treatment of Metastatic Osteosarcoma with Human Epidermal Growth Factor Receptor 2 Overexpression: A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 30, 2545-2551.
https://doi.org/10.1200/JCO.2011.37.4546
[39] Schwartz, C.L., Wexler, L.H., Krailo, M.D., et al. (2016) Intensified Chemotherapy with Dexrazoxane Cardioprotection in Newly Diagnosed Nonmetastatic Osteosarcoma: A Report from the Children’s Oncology Group. Pediatric Blood & Cancer, 63, 54-61.
https://doi.org/10.1002/pbc.25753
[40] Lipshultz, S.E., Lipsitz, S.R., Sallan, S.E., et al. (2002). Long-Term Enalapril Therapy for Left Ventricular Dysfunction in Doxorubicin-Treated Survivors of Childhood Cancer. Journal of Clinical Oncology, 1, 4517-4522.
https://doi.org/10.1200/JCO.2002.12.102
[41] Tamene, A.M., Masri, C. and Konety, S.H. (2015) Cardiovascular MR Imaging in Cardio-Oncology. Magnetic Resonance Imaging Clinics of North America, 23, 105-116.
https://doi.org/10.1016/j.mric.2014.09.007