碳纳米管(CNT)纯化研究进展
Research Progress of Single Wall Carbon Nanotubes (CNT) Purification
DOI: 10.12677/MS.2020.1012114, PDF, HTML, XML, 下载: 430  浏览: 856  科研立项经费支持
作者: 王白雪, 蒋 姝, 陈顺才:重庆轻工职业学院,重庆;黄承洪*:重庆科技学院,重庆
关键词: 碳纳米管纯化Carbon Nanotubes (CNT) Purification
摘要: 碳纳米管自被发现以来,由于其独特的分子结构与电化学特性,有望在物理、化学、生物等领域获得巨大的应用,而引起广泛的重视。但由于规模化生产等工艺原因导致其含有较多的杂质,获得纯净的单壁(SWCNT)就显得较为困难。本文就当前SWCNT的纯化方法包括氧化法、生物高聚物法、卟啉超分子法等纯化SWCNT进行了综述,为该领域的研究者们提供参考。
Abstract: Carbon nanotubes are taken more seriously importance since it was found as it has unique struc-ture and electrochemical characteristics. But, it usually carried impurities, which attributed to the inherent fabrication method of large-scale production. So, it is difficult to obtain unadulterated CNT. This paper mainly reviews the progress of the purification of CNT by many methods including oxidation process, handling of acid, treatment of polymers and porphyrin supermolecules, etc. It aims to offer references for related researchers.
文章引用:王白雪, 蒋姝, 陈顺才, 黄承洪. 碳纳米管(CNT)纯化研究进展[J]. 材料科学, 2020, 10(12): 952-956. https://doi.org/10.12677/MS.2020.1012114

1. 引言

碳纳米管(Carbon nanotubes, CNTs)被发现以来就成为业界研究的热点 [1]。CNTs上每个碳原子采取SP2杂化,相互之间以碳–碳σ键结合,形成六边形的蜂窝状骨架,特殊的分子结构决定其具有良好的力学、电学和物理化学性质,在复合材料 [2]、电化学器件 [3]、场效应晶体管 [4]、甚至人工肌肉 [5] 等领域呈现重要的应用。从科学发展来看,可控制备和应用研究是碳纳米管研究领域的重点和难点 [6]。当前,CNTs大规模应用面临的首要问题是获取高纯度CNTs。纯化CNTs的方法有很多,但大多数都是利用氧化法来除去杂质 [7],而且单壁碳纳米管(Single-wall carbon nanotubes, SWCNTs)具有的强大的作用力聚集成束,很难获得单根CNTS。因此,发明方便快速的纯化方法具有重要价值。

2. 碳纳米管(CNT)纯化方法

2.1. 盐酸处理

SWCNTs制备方法(CVD法)直接决定了碳纳米管中含有无定型碳、富勒烯、催化剂和纳米碳胶囊,这也成为制约其应用的瓶颈,因此其大规模应用的首要难题就是得到高纯度的SWCNTs [8]。当前已经有很多种纯化SWCNTs的方法,用得最早的气相氧化法,但经该法回收的SWCNTs收率低且效果差。比如Jeong等 [9] 用电弧放电法所得到的SWNTs粗产品,先用盐酸处理SWCNTs以除去金属催化剂颗粒,然后将SWCNTs用10 mL/min的H2S和20 mL/min的氧气混合气体在500℃下处理1 h,得到的SWCNTs产率只有20%~50%,Bougrine等 [10] 研究了SWCNTs在经过蒸馏水处理空气中 700 ℃ 氧化,最后产物中富含SWCNTs,但仍有少量的无定形碳和包被在SWCNTs中的金属颗粒。

2.2. 硝酸处理

由于气相氧化法不能很好解决SWCNTs的产率问题,有学者采用液相氧化法对SWCNTs进行处理。例如Umek等 [11] 在热吡啶中用索格利特法(Soxhlet)萃取,以除去富勒烯,然后用65%的HNO3浸泡以除去金属催化剂颗粒。经硝酸处理后SWCNTs经STM电镜观察显示直径分布在1.7~2.5 nm之间,SWCNTs完整性较好,但金属催化剂颗粒未被完全去除。Vaccarini等 [12] 先将用电弧放电法得到的SWCNTs粗产品用硝酸在100℃下回流,再经交叉流动过滤,然后在N2保护下经1600℃高温处理,可得到纯度大于90%的SWCNTs,该方法虽然可以除去粗产品中的杂质,但也改变了SWCNTs的表面结构,特别是表面产生许多功能基团给SWCNTs在很多领域的应用带来很大影响。

2.3. 超声过滤法

鉴于氧化法只能除去无定形碳,而不能有效地除去纳米胶囊,很多学者采用物理的方法处理SWCNTs。Shelimov等 [13] 用超声波助滤法成功地将无定形碳以及碳纳米胶囊除去,这种方法虽然纯度达90%,产率达33%~70%,结果表明SWCNTs上附着的大部分无定形碳都能被剥离下来并除去,但仍遗留部分无定形碳和纳米胶囊。应用生物聚合物纯化可以得到高产率SWCNTs,Lu等报道 [14] 应用结冷胶处理SWCNTs后不但可以得到高产率,还可以在机械剪切力作用下实现分子定向制备SWCNTs液晶薄膜,为SWCNTs在LED行业应用提供了新思路。

2.4. 物理化学综合法

基于此,近年来对碳纳米管的处理多采用综合处理法。Li等 [15] 在纯化用CVD法生产的SWCNTs时,先将样品在盐酸中超声波处理1 h,然后用酸溶解样品10 h以除去催化剂颗粒,再超声波处理,最后用去离子水洗清干燥得到纯度95%的SWCNTs。Zhang等 [16] 在研究用激光法制得的SWCNTs的纯化及其结构改性时,首先将SWCNTs在空气中加热到350℃保温2 h以除去无定形碳,然后在36%的盐酸中浸泡24 h并且离心除去金属颗粒,然后分散在0.2%的杀藻胺溶液中,用1 µm孔径的聚四氟乙烯薄膜过滤、分散与过滤,最后将得到的过滤物以在0.2 µm孔的薄膜中真空过滤以除去SWCNTs中的纳米颗粒,纯化后大部分富勒烯、金属颗粒和无定形碳被除去,而聚集的石墨颗粒和包在碳管里面的金属颗粒仍然存在。而且,过滤过程中原来碳管束的聚合,纯化后的SWCNTs束的直径增大了,通过TEM照片显示无定形碳是通过空气氧化除去的而不是由盐酸处理去除的。由此可见,寻找一种简便易行且效果很好的纯化方法,得到单壁碳纳米管的单分散溶液是SWCNTs研究领域的重要课题。

Figure 1. Chirality porphyrin with shape-selectivity. (a) Illustration of shape-selectively porphyrin, and (b) the model of shape-selectively porphyrin

图1. 形状选择性的手性卟啉 [18]。(a) 啉分子形状选择性示意图;(b) 卟啉手性识别分子模型

2.5. 生物分子处理法

最近Li等 [17] 报道卟啉单体分子可以吸附在SWCNTs上。卟啉及卟啉衍生物具有大环共轭芳香体系和生色基团,这种特殊的结构使得分子中官能团与客体分子之间可产生良好的相互作用发生构型变化从而可对其周边卟啉进行较好地控制 [18] (图1)。再加上金属卟啉分子本身有较大的分子表面,因而对其轴向配体周围的空间容积和相互作用方向的控制余地较大。比如MacKernan等 [19] 的研究就表明卟啉分子可以在SWCNTs表面以强大的疏水作用力相互作用(图2)。依靠这种强烈的相互作用可以实现卟啉在有机溶剂中装配在SWCNTs上 [20]。

氧化SWCNTs能在壳聚糖溶液中均匀分散。比如Lu报道 [21] 氧化SWCNTs可以得到很好的纯化,并且可以形成形状规则的有序纳米结构,经离心处理可以得到较为纯净的SWCNTs。Ozarkar等 [22] 研究认为功能化单壁碳纳米管具有更好的分散性,这提示利用壳聚糖良好的水溶性和卟啉分子的疏水作用设计具有两亲性质的卟啉超分子用于SWCNTs大规模纯化成为可能。Huang等 [23] 研究了卟啉化壳聚糖与SWCNTs相互作用,发现被卟啉化壳聚糖包裹的SWCNTs发生明显的荧光猝灭现象,说明在卟啉化壳聚糖缠绕SWCNTs时,卟啉分子可以与SWCNTs经疏水作用力结合实现电子载荷的有效转移。

Figure 2. Single molecule attached on the surface of SWCNTs. (a) Simulation illustration of interaction among HETPP-SWCNT-DMF system, only 4 HETPPs were presented, DMF (yellow) and just 1 SWCNT in the picture, (c) it is obvious that the DETPP is approaching the SWCNT, (d) there have not TPP aggregation in TPP-CNT-DMF system

图2. 卟啉单分子在碳纳米管表面的贴附 [20]。(a) HETPP-SWCNT-DMF体系相互作用模拟图,其中HETPP分子只显示4个,DMF (黄色)和SWCNT只显示一个分子;(b) DETPP接近SWCNT的趋势明显;(c) TPP-CNT-DMF溶剂体系,TPP分子并没有发生明显的聚集现象

3. 结语

碳纳米管(Carbon nanotubes, CNTs)由于独特的物理化学性能,有望在工农业有非常良好的应用前景。由于碳纳米管制备工艺的原因,含有少量无定形碳等杂质,目前有盐酸处理、硝酸处理、超声过滤、物理化学综合处理、以及生物分子处理法等。工业应用亟须出现简单有效的高效率提取与纯化方法。

致谢

研究得到重庆市科技局民生项目(CSTC2016shmszx0600, cstc2019jscx-msxm1542)和重庆市教委科技项目(KJZD-K201906401, KJQN201906402, KJ1605703)资助。

参考文献

[1] Lijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[2] Wang, X., Li, G., Liu, R., Ding, H. and Zhang, T. (2012) Reproducible Layer-by-Layer Exfoliation for Free-Standing Ultrathin Films of Single-Walled Carbon Nanotubes. Journal of Materials Chemistry, 22, 21824-21827.
https://doi.org/10.1039/c2jm34262f
[3] Wang, L.C., Tang, K.T., Chiu, S.W., Yang, S.R. and Kuo, C.T. (2011) A Bio-Inspired Two-Layer Multiple-Walled Carbon Nanotube-Polymer Composite Sensor Array and a Bio-Inspired Fast-Adaptive Readout Circuit for a Portable Electronic Nose. Biosensors and Bioelectronics, 26, 4301-4307.
https://doi.org/10.1016/j.bios.2011.04.015
[4] Slobodian, P., Riha, P., Lengalova, A., Svoboda, P. and Saha, P. (2011) Multi-Wall Carbon Nanotube Networks as Potential Resistive Gas Sensors for Organic Vapor Detection. Carbon, 49, 2499-2507.
https://doi.org/10.1016/j.carbon.2011.02.020
[5] Foroughi, J., Spinks, G.M., Wallace, G.G., Oh, J., Kozlov, M.E., Fang, S., Mirfakhrai, T., Madden, J.D.W., Shin, M.K., Kim, S.J. and Baughman, R.H. (2011) Torsional Carbon Nanotube Artificial Muscles. Science, 334, 494-497.
https://doi.org/10.1126/science.1211220
[6] Hiura, H., Ebbesen, T.W. and Tanigaki, K. (2004) Opening and Pu-rification of Carbon Nanotubes in High Yields. Advanced Materials, 7, 275-276.
https://doi.org/10.1002/adma.19950070304
[7] Yaya, A. and Ewels, C. (2011) Purification of Single-Walled Carbon Nanotubes. The European Physical Journal Applied Physics, 54, 10141.
https://doi.org/10.1051/epjap/2011100482
[8] Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K. and Hiura, H. (1993) Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature, 362, 522-525.
https://doi.org/10.1038/362522a0
[9] Jeong, T., Kim, W.-Y. and Hahn, Y.-B. (2001) A New Purification Method of Single-Wall Carbon Nanotubes Using H2S and O2 Mixture Gas. Chemical Physics Letters, 344, 18-22.
https://doi.org/10.1016/S0009-2614(01)00780-1
[10] Bougrine, A., Naji, A., Ghanbaja, J. and Billaud, D. (1999) Purification and Structural Characterization of Single-Walled Carbon Nanotubes. Synthetic Metals, 103, 2480-2481.
https://doi.org/10.1016/S0379-6779(98)01064-9
[11] Umek, P., Vrbanic, D., Remskar, M., Mertelj, T., Venturini, P., Pejovnik, S. and Mihailovic, D. (2002) An Effective Surfactant-Free Isolation Procedure for Single-Wall Carbon Nanotubes. Carbon, 40, 2581-2585.
https://doi.org/10.1016/S0008-6223(02)00170-7
[12] Vaccarini, L., Goze, C., Aznar, R., Micholet, V., Journet, C. and Dernier, P. (1999) Purification Procedure of Carbon Nanotubes. Synthetic Metals, 103, 2492-2493.
https://doi.org/10.1016/S0379-6779(98)01087-X
[13] Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B. and Smalley, R.E. (1998) Purification of Single-Wall Carbon Nanotubes by Ultrasonically Assisted Filtration. Chemical Physics Letters, 282, 429-434.
https://doi.org/10.1016/S0009-2614(97)01265-7
[14] Lu, L. and Chen, W. (2011) Large-Scale Aligned Carbon Nanotubes from Their Purified, Highly Concentrated Suspension. ACS Nano, 4, 1042-1048.
https://doi.org/10.1021/nn901326m
[15] Li, F., Cheng, H.M., Xing, Y.T., Tan, P.H. and Su, G. (2000) Purification of Single-Walled Carbon Nanotubes Synthesized by the Catalytic Decomposition of Hydrocarbons. Carbon, 38, 2041-2045.
https://doi.org/10.1016/S0008-6223(00)00061-0
[16] Zhang, J., Tan, F., Li, H., Jin, H. and Li, Q. (2012) Effects of Purification on the Diameter Separation of Metallic Single-Walled Carbon Nanotubes by Gel Column Chromatography. Physica Status Solidi (RRL)—Rapid Research Letters, 6, 250-252.
https://doi.org/10.1002/pssr.201206145
[17] Liu, H., Martin, R.B., Harruff, B.A., Carina, R.A., Allard, L.F. and Shu, Y. (2004) Single-Walled Carbon Nanotubes Tethered with Porphyrins Synthesis and Photophysical Properties. Advanced Materials, 16, 896-900.
https://doi.org/10.1002/adma.200306288
[18] Shirsat, M.D., Sarkar, T., Kakoullis, J., Myung, N.V., Konnanath, B., Spanias, A. and Mulchandani, A. (2012) Porphyrin-Functionalized Single-Walled Carbon Nanotube Chemiresistive Sen-sor Arrays for VOCs. The Journal of Physical Chemistry C, 116, 3845-3850.
https://doi.org/10.1021/jp210582t
[19] MacKernan, D., Mhuircheartaigh, E.N. and Blau, W. (2007) Porphyrin and Carbon Nanotube Assemblies in Polar Solvents. SPIE, 1-2.
https://doi.org/10.1117/2.1200712.0954
[20] Venkatesan, J., Ryu, B., Sudha, P.N. and Kim, S.-K. (2012) Prepa-ration and Characterization of Chitosan-Carbon Nanotube Scaffolds for Bone Tissue Engineering. International Journal of Biological Macromolecules, 50, 393-402.
https://doi.org/10.1016/j.ijbiomac.2011.12.032
[21] Lu, L. and Chen, W. (2010) Biocompatible Composite Actuator: A Supramolecular Structure Consisting of the Biopolymer Chitosan, Carbon Nanotubes, and an Ionic Liquid. Advanced Materials, 22, 3745-3748.
https://doi.org/10.1002/adma.201001134
[22] Ozarkar, S., Jassal, M. and Agrawal, A.K. (2008) Improved Dis-persion of Carbon Nanotubes in Chitosan. Fibers and Polymers, 9, 410-415.
https://doi.org/10.1007/s12221-008-0066-5
[23] Wang, S.-F., Shen, L., Zhang, W.-D. and Tong, Y.-J. (2005) Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules, 6, 3067-3072.
https://doi.org/10.1021/bm050378v