应用数学进展  >> Vol. 10 No. 1 (January 2021)

关千等嫡可压缩Navier-Stokes-Poisson方程组的一些先验估计
Local Weak Solution of the Barotropic Compressible Navier-Stokes-Poisson Equations

DOI: 10.12677/AAM.2021.101003, PDF, 下载: 27  浏览: 74 

作者: 周 杰:中央民族大学理学院,北京

关键词: Navier-Stokes-Poisson方程存在性弱解Navier-Stokes-Poisson Equations Existence Weak Solution

摘要: 关千研究等嫡可压缩的Navier-Stokes-Poisson方程对Cauchy问题的弱解研究。我们需要有一些关千等嫡可压缩Navier-Stokes-Poisson方程组的一些先验估计。本文我们主要研究带有Poisson项的基本能量估计、B. Desjardin的估计方法。
Abstract: On the study of weak solutions of barotropic compressible Navier-Stokes-Poisson equa- tion to Cauchy problem. We need some prior estimates for barotropic compressible Navier-Stokes-Poisson equations. We mainly use energy estimation, B. Desjardin’s estimation method.

文章引用: 周杰. 关千等嫡可压缩Navier-Stokes-Poisson方程组的一些先验估计[J]. 应用数学进展, 2021, 10(1): 24-36. https://doi.org/10.12677/AAM.2021.101003

参考文献

[1] Vaigant, V.A. (1993) An Example of the Nonexistence “in the Large” with Respect to Time of a Solution to the Navier-Stokes Equations of a Compressible Viscous Barotropic Fluid. Dinamika Sploshn. Sredy, 107, 39-48.
[2] Lions, P.L. (1998) Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models. Oxford University Press, New York.
[3] Feireisl, E., Novotny, A. and Petzeltova, H. (2001) On the Existence of Globally Defined Weak Solution to the Navier-Stokes Equations. Journal of Mathematical Fluid Mechanics, 3, 358-392.
https://doi.org/10.1007/PL00000976
[4] Jiang, S. and Zhang, P. (2001) On Spherically Symmetric Solutions of the Compressible Isen- tropic Navier-Stokes Equations. Communications in Mathematical Physics, 215, 559-581.
https://doi.org/10.1007/PL00005543
[5] Hoff, D. (1995) Global Solutions of the Navier-Stokes Equations for Multidimensional Com- pressible Flow with Discontinuous Initial Data. Journal of Differential Equations, 120, 215-254.
https://doi.org/10.1006/jdeq.1995.1111
[6] Hoff, D. (2002) Dynamics of Singularity Surfaces for Compressible, Viscous Flows in Two Space Dimensions. Communications on Pure and Applied Mathematics, 55, 1365-1407.
https://doi.org/10.1002/cpa.10046
[7] Huang, X.D. (2017) Existence and Uniqueness of Weak Solutions of the Compressible Spherical Symmetric Navier-Stokes Equations. Journal of Differential Equations, 262, 1341-1358.
https://doi.org/10.1016/j.jde.2016.10.013
[8] Cho, Y. and Kim, H. (2006) On Classical Solutions of the Compressible Navier-Stokes Equa- tions with Nonnegative Initial Densities. Manuscripta Mathematica, 120, 91-129.
https://doi.org/10.1007/s00229-006-0637-y
[9] Huang, X.D., Li, J. and Xin, Z.P. (2012) Global Well-Posedness of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Isentropic Compressible Navier- Stokes Equations. Communications on Pure and Applied Mathematics, 65, 549-585.
https://doi.org/10.1002/cpa.21382
[10] Kobayashi, T. and Suzuki, T. (2004) Weak Solutions to the Navier-Stokes-Poisson Equation.Advances in Mathematical Sciences and Applications,18, 141-168.
[11] Zhang, Y.H. and Tan, Z. (2007) On the Existence of Solutions to the Navier-Stokes-Poisson Equations of a Two-Dimensional Compressible Flow. Mathematical Methods in the Applied Sciences, 30, 305-329.
https://doi.org/10.1002/mma.786
[12] Huang, X.D. and Wei, Y. (2020) Local Weak Solution of the Isentropic Compressible Navier- Stokes Equations. Preprint.
[13] Desjardins, B. (1997) Regularity of Weak Solution of Compressible Isentropic Navier-Stokes Equations. Communications in Partial Differential Equations, 22, 997-1008.
https://doi.org/10.1080/03605309708821291