基于密度泛函理论的二氧化钛光催化研究综述
A Review of Titanium Dioxide Photocatalysis Based on Density Functional Theory
DOI: 10.12677/HJCET.2021.111005, PDF, HTML, XML, 下载: 675  浏览: 1,569 
作者: 秦秋实, 周巧云, 杜 煦, 张敬红*, 付 东:华北电力大学环境科学与工程系,河北 保定
关键词: 二氧化钛改性密度泛函VASPMaterial StudioGaussianTitanium Dioxide Modification Density Functional Theory (DFT) VASP Material Studio Gaussian
摘要: 密度泛函理论(Density Function Theory, DFT)是量子角度诠释催化剂功能的主要方法,在二氧化钛改性计算中应用广泛。在光催化改性的研究中,常配合算法来指导选材或辅助说明研究结果的准确性。本文对三种常用的DFT计算软件(VASP, Material Studio和Gaussian)在二氧化钛光催化领域的应用进行了综述,同时对DFT在该领域的研究前景作了展望。
Abstract: Density functional theory (DFT) is widely used in titanium dioxide modification calculations and is the main method for interpreting catalysts from a quantum perspective. In the study of photocatalytic modification, algorithms are often used to assist in the accuracy of the results. This paper summarized the application of three commonly used DFT calculation softwares like VASP, Material Studio and Gaussian in photocatalytic modification, and then prospected the research prospect of DFT in this field.
文章引用:秦秋实, 周巧云, 杜煦, 张敬红, 付东. 基于密度泛函理论的二氧化钛光催化研究综述[J]. 化学工程与技术, 2021, 11(1): 30-36. https://doi.org/10.12677/HJCET.2021.111005

1. 引言

近年来,以二氧化钛(TiO2)为基础的光催化材料对污染物的吸附催化研究越发深入,密度泛函理论(Density Function Theory, DFT)方法对于研究流体在不同材料上的吸附过程具有显著指导作用,在离子掺杂、贵金属负载、半导体复合等技术中有广泛应用。物质内部结构探索需要实验与理论的共同结合,DFT理论计算方法是必须的组成部分。本文介绍了VASP, Material Studio和Gaussian等三种DFT计算方法在光催化改性领域的应用,并比较了优缺点。

2. TiO2的性质及应用

自1972年Honda和Fujishima [1] 开始研究以来,TiO2的光催化作用逐渐被物理、化学、材料等领域所关注。1976年,Carey等 [2] 开始了研究TiO2光催化剂在环境保护中的应用。光催化适用于环保和能源等领域,如在污水处理、净化空气、抗菌、防雾自洁中被广泛应用 [3] [4] [5] [6],TiO2光催化剂处理有机废水效果显著 [7] [8] [9],在光照下有机化合物发生氧化还原反应逐步分解,最终降解为环境友好的CO2、H2O以及无毒无机物,在污水有机污染物的处理中有巨大潜力 [10] [11]。

TiO2在自然界中主要存在金红石(Rutile)、锐钛矿(Anatase)和板钛矿(Brookite)三种晶型 [12] [13] [14],材料结构的不同导致它们的质量密度和电子能带结构差异 [15] [16] [17],进而影响光催化性能,锐钛矿型TiO2晶格内和表面存在较多氧空位可捕获光生电子,更利于光催化活性的提高。但以下两个难题限制了TiO2的整体光催化性能。

1) TiO2作为宽禁带半导体吸取的太阳光范围有限 [18] [19],制约了TiO2在可见光波段的应用。

2) TiO2的光生载流子无法有效分离 [20] [21],致使电子和空穴无法及时参与氧化还原反应,因此光催化效率较低。

为了提高光催化性能,复合光催化剂已被广泛开发 [22] [23]。TiO2改性可通过金属改性、半导体复合、离子掺杂和染料敏化来实现,其中离子掺杂是目前使用最广泛的TiO2改性方法 [24] [25] [26]。可用于掺杂的金属离子有 Fe3+、Cu2+、Pb2+、V5+、Cd2+、La3+、Ru3+、Rh3+等 [27] [28],当掺杂离子与Ti4+价态相似或离子半径相似时,催化效果得以最大的提升 [29]。为防止较高的金属离子掺杂浓度使空穴与电子再次结合,同时扩宽光吸收范围,改性由最初的金属离子掺杂发展为非金属离子及其它离子共同掺杂。在其结构表征、合成设计、性能分析过程中普遍应用到了DFT计算,来模拟催化剂的表面活性,设计新型TiO2催化剂。

3. DFT及计算软件

DFT是基于Thomas-Fermi模型 [30] 并融合了Hohenberg-Kohn定理和Kohn-Sham定理 [31] [32] 后形成的理论,该理论有效拓宽了量子力学对气相分子、团簇及晶体等多粒子复杂体系的应用范围。在DFT理论中所有的量是精准的,通过建立函数关系确定体系势能,使总能量由电子密度相关的函数来表达 [33],通过Kohn-Sham方程获得准确的电荷密度与体系总动能。目前,为了提高理论计算的精度,引入了混合泛函方法,即将Hartree-Fock的交换能与DFT中的交换能作为线性组合,得到系统的交换相关泛函。借助VASP, Material Studio和Gaussian等商用量化计算软件,可估算带隙变化、电荷分离以及催化反应中物质的吸附和活化情况 [34],可为实验提供指导,也可为实验现象的合理推断和解释提供依据。

3.1. VASP

VASP (Vienna Ab-initio Simulation Package)利用平面波赝势法进行从头模拟 [35] [36],并利用周期边界条件处理原子、分子、团簇、晶体、薄膜、固体和表面系统等。通常以VASP的计算结果结合XPS证明实验的准确性。He等 [37] 计算了常用TiO2的表面能,用于后续吸附能和吉布斯自由能的计算,构建并优化了Li2Sx/S8-TiO2 (101)复合物的构型,揭示了含氧缺陷的增强机理,并对先进硫基体材料的设计提供了一定的指导。Wang等 [38] 采用广义梯度近似泛函的自旋极化的DFT计算,发现TiO2负载Pt小团簇后更有利于在表面区域形成氧空位,减少了体相内空位,从而证明了可利用表面氧空位和表面负载的Pt小团簇之间存在的协同关系来提高光催化活性。Ding等 [39] 在VASP计算中使用了Perdew-Burke-Ernzerhof (PBE)交换相关函数,研究了Bi2O2Se修饰的TiO2的电子结构与XPS界面变化的一致性。其结果表明,TiO2与Bi2O2Se之间存在明显的相互作用,具体表现为电荷变化。Treacy [40] 应用PBE函数进行DFT计算,并以此作为SXRD的比较参数。目前,VASP已广泛应用于复杂系统的优化和表面吸附的研究,并可用于大型计算机的高效并行计算。

VASP基于DFT对Kohn-Shan方程进行迭代求解,从头计算求解薛定谔方程,其预测的结果可与试验结果互为佐证,使数据更具科学性。Henkelman、Mathew、Stoliaroff [41] [42] [43] 等人不断对VASP进行程序补充,完善进行催化反应的计算条件,对电荷的描绘更为具体。Zhang等 [44] 开发VaspCZ辅助程序,提高了计算效率,使VASP更为高效便捷。逐步突破了计算速度、分子参数选择的制约,使VASP能在DFT理论计算应用中更具体全面。

3.2. Material Studio (MS)

MS包含多个执行不同计算的模块,如Material Visualizer、Discover、COMPASS、Cell、Reflex、DMol3、CASTEP等模块。其中,CASTEP是TiO2改性计算中高频使用的模块,它基于DFT计算方法 [45] [46],被应用于表面化学、键结构、光化学、电荷密度的研究。在催化剂的设计中MS通过分子结构、力学、表面吸附活性能等的参数选取,选择性的开发预期性能的催化剂。Guo [47] 利用CASTEP软件包进行DFT计算,并采用规范守恒赝势描述价电子和离子芯之间的相互作用,研究了N-B共掺杂的TiO2电子结构及光催化效果,表明可吸收的太阳光范围随掺杂离子距离的增加而增大。Cao等 [48] 在CASTEP计算过程中,选取TiO2超晶胞作为基础模型,将超晶胞中心的Ti原子设为取代原子;采用超软赝势描述电子与离子芯之间的相互作用;采用平面波基组展开电子波函数,通过对电荷密度的计算分析,从原子角度阐述稀土Sm对TiO2的掺杂改性原理。Liu等 [49] 运用MS软件中的CASTEP模块,建立了基于锐钛矿型TiO2的计算模型,采用DFT计算超晶胞模型的结构、态密度和光吸收强度,最后进行晶格优化,发现由于Au的掺杂,使得禁带宽度减小,光吸收系数发生改变,掺杂浓度较低时可见光吸收的范围增大,掺杂浓度较高时光吸收强度增大。Bakhtawar等 [50] 利用DFT计算并分析了Ni、Eu单掺杂与共掺杂的TiO2晶格参数、结构性质、电子密度和带隙结构,进而分析了Ni和Eu共掺杂TiO2中的表面性能和结构性能的变化。对不同的改性TiO2进行对比并画出了光吸收与能量曲线。Li等 [51] 应用CASTEP程序基于DFT方法计算了掺S、Mn、和Mn-S的锐钛矿TiO2的电子结构和光学特性。从微观尺度分析了S、Mn掺杂情况下的催化剂性能,结果表明由于掺杂杂质原子导致TiO2晶格畸变,晶格常数减小,增强了TiO2对可见光的吸收能力。

MS可帮助分析电子密度分布、结构形貌、表面吸附力等与性能之间的内在规律 [52],其CASTEP模块可对分子结构做最优化分析 [53],对晶体相关特性进行预算,在TiO2的改性过程中,可针对性地设计催化剂,降低催化剂的研发时间和经济成本。

3.3. Gaussian

Gaussian软件是应用于半经验计算和从头计算中的量子化学软件,可支持分子能量及结构、过渡态能量及分子轨道等的研究,模拟处于气相和液相中的体系,模拟基态与激发态。Gaussian软件常用于计算分子轨道、振动频率、热力学性质、FT-IR和拉曼光谱、多重矩、反应路径等。在对于TiO2的改性研究中,主要应用Gaussian软件中的DFT算法,包括LSDA, BLPY, Becke的三种参数混合方法,Becke的单参数混合方法,及自行组合的混合方法。Huerta-Aguilar等 [54] 在Gaussian 16中采用PBE交换相关性进行计算,确定了材料晶格内的键距、电子密度和力,通过DFT研究进一步证实了Ti4+的氧化态的存在,即TiO2-Ag的电子性质会发生显著变化,从而降低带隙能量,提高催化效率。

Gaussian软件从微观角度分析复杂化学反应的可能性、预测化学反应历程、产物结构及光谱性质,更适用于溶液体系的计算。在操作中可配合使用Gaussview辅助软件,在Gaussview的帮助下提高计算速度,所需输入数据在量子化学计算软件中相对性较少,程序简单可实现功能全面,但计算结果需要结合化学的知识去进一步分析 [55]。在基于TiO2改性的水处理研究中,Gaussian软件较其它方法对平衡与非平衡态的计算更为完善,能用来帮助解释和预测实验结果。

VASP、MS、Gaussian的对比见表1

Table 1. Comparison of VASP, MS and Gaussian

表1. VASP、MS、Gaussian对比

4. 结束语

DFT在TiO2改性中能有效地指导TiO2机理研究使TiO2的体系参数被逐一优化,改性的TiO2结构中,TiO2键长和键能是反应其催化活性的重要指标。VASP, Material Studio和Gaussian等软件深入研究了催化剂的尺寸、晶格应变、维度量纲、表面结构等结构,明确了催化剂的电子密度分布、表面吸附性能等内在规律 [56];确保了密度泛函在催化剂局部计算中的精度,为实验操作提供有效且可行的借鉴;对于不确定参数的调整和研究提供了可靠的方法,使密度泛函在TiO2改性领域中普遍应用,针对性地设计催化剂,缩短研发时间降低研发成本,在TiO2改性中发挥了极大的价值,具有广泛的应用前景。

NOTES

*通讯作者。

参考文献

[1] Fujishma, A. and Honda, K. (1972) Electrochemical Photo-Catalysis of Water at Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2] Carey, J.H., Lawrence, J. and Tosine, H.M. (1976) Photodechlorina-tion of PCB’s in the Presence of Titanium Dioxide in Aqueous Suspensions. Bulletin of Environmental Contamination and Toxicology, 16, 697-701.
https://doi.org/10.1007/BF01685575
[3] Chen, X.B., Chen, S.H., Guo, L.J. and Mao, S.S. (2010) Semiconduc-tor-Based Photocatalytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570.
https://doi.org/10.1021/cr1001645
[4] Wu, L.Z., Chen, B., Li, Z.J. and Tung, C.H. (2014) Enhancement of the Ef-ficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 47, 2177-2185.
https://doi.org/10.1021/ar500140r
[5] White, J.L., Baruch, M.F., Pander III, J.E., Hu, Y., Fortmeyer, I.C., Park, J.E., Zhang, T., Liao, K., Gu, J., Yan, Y., et al. (2015) Light-Driven Heterogeneous Reduction of Carbon Dioxide: Pho-tocatalysts and Photoelectrodes. Chemical Reviews, 115, 12888-12935.
https://doi.org/10.1021/acs.chemrev.5b00370
[6] Habisreutinger, S.N., Schmidt-Mende, L. and Stolarczyk, J.K. (2013) Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition, 52, 7372-7408.
https://doi.org/10.1002/anie.201207199
[7] Tu, W.G., Zou, Y. and Zhou, Z.G. (2014) Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26, 4607-4626.
https://doi.org/10.1002/adma.201400087
[8] Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research, 44, 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
[9] Shi, R., Waterhouse, G.I.N. and Zhang, T.R. (2017) Recent Pro-gress in Photocatalytic CO2 Reduction over Perovskite Oxides. Solar RRL, 1, Article ID: 1700126.
https://doi.org/10.1002/solr.201700126
[10] Bai, S., Jiang, J., Zhang, Q. and Xiong, Y.J. (2015) Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chemical Society Reviews, 44, 2893-2939.
https://doi.org/10.1039/C5CS00064E
[11] Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M. and Ye, J.H. (2012) Nano-Photocatalytic Materials: Possibilities and Challenges. Advanced Materials, 24, 229-251.
https://doi.org/10.1002/adma.201102752
[12] Liu, G., Yang, H.G., Pan, J., Yang, Y.Q. and Cheng, H.-M. (2014) Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 114, 9559-9612.
https://doi.org/10.1021/cr400621z
[13] Bai, S., Wang, L.L. and Xiong, Y.J. (2017) Facet-Engineered Surface and Interface Design of Photocatalytic Materials. Advanced Science, 4, Article ID: 1600216.
https://doi.org/10.1002/advs.201600216
[14] Ahmed, A.Y., Kandiel, T.A., Oekermann, T. and Bahnemann, D. (2011) Photocatalytic Activities of Different Well-Defined Single Crystal TiO2 Surfaces: Anatase versus Rutile. The Journal of Physical Chemistry Letters, 2, 2461-2465.
https://doi.org/10.1021/jz201156b
[15] Katal, R., Ma-sudy-Panah, S., Tanhaei, M. and Hu, J.Y. (2020) A Review on the Synthesis of the Various Types of Anatase TiO2 Fac-ets and Their Applications for Photocatalysis. Chemical Engineering Journal, 384, Article ID: 123384.
https://doi.org/10.1016/j.cej.2019.123384
[16] 宋佳颖. 锑在二氧化钛表面的吸附去除及光催化氧化机理[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2017.
[17] Tayade, R.J., Surolia, P.K. and Jasra, R.V. (2007) Photocata-lytic Degradation of Dyes and Organic Contaminants in Water Using Nanocrystalline Anatase and Rutile TiO2. Science and Technology of Advanced Materials, 8, 455-462.
https://doi.org/10.1016/j.stam.2007.05.006
[18] Nayak, A.K., Lee, S., Choi, Y.I., Yoon, H.J., Sohn, Y. and Pra-dhan, D. (2017) Crystal Phase and Size-Controlled Synthesis of Tungsten Trioxide Hydrate Nanoplates at Room Tem-perature: Enhanced Cr(VI) Photoreduction and Methylene Blue Adsorption Properties. ACS Sustainable Chemistry & Engineering, 5, 2741-2750.
https://doi.org/10.1021/acssuschemeng.6b03084
[19] Nagy, D., Nagy, D., Szilagyi, I.M. and Fan, X.F. (2016) Ef-fect of the Morphology and Phases of WO3 Nanocrystals on Their Photocatalytic Efficiency. RSC Advances, 6, 33743-33754.
https://doi.org/10.1039/C5RA26582G
[20] Qiu, Y.F., Yang, M.L., Fan, H.B., Zuo, Y.Z., Shao, Y.Y., Xu, Y.J., Yang, X.X. and Yang, S.H. (2011) Nanowires of α- and β-Bi2O3: Phase-Selective Synthesis and Appli-cation in Photocatalysis. CrystEngComm, 13, 1843-1850.
https://doi.org/10.1039/C0CE00508H
[21] 兰茜. 非金属与稀土元素镧共掺杂二氧化钛光催化剂的制备及光催化性能研究[D]: [硕士学位论文]. 上海: 华东理工大学, 2013.
[22] Li, X., Yu, J.G. and Jaroniec, M. (2016) Hier-archical Photocatalysts. Chemical Society Reviews, 45, 2603-2636.
https://doi.org/10.1039/C5CS00838G
[23] Gao, C., Wang, J., Xu, H.X. and Xiong, Y.J. (2017) Coordination Chemistry in the Design of Heterogeneous Photocatalysts. Chemical Society Reviews, 46, 2799-2823.
https://doi.org/10.1039/C6CS00727A
[24] Tanabe, I., Ryoki, T. and Ozaki, Y. (2014) Significant Enhancement of Photocatalytic Activity of Rutile TiO2 Compared with Anatase TiO2 upon Pt Nanoparticle Deposition Studied by Far-Ultraviolet Spectroscopy. Physical Chemistry Chemical Physics, 16, 7749-7753.
https://doi.org/10.1039/C4CP00329B
[25] Song, C.K., Baek, J., Kim, T.Y., Yu, S., Han, J.W. and Yi, J. (2016) Exploring Crystal Phase and Morphology in the TiO2 Supporting Materials Used for Visible-Light Driven Plasmonic Photocatalyst. Applied Catalysis B: Environmental, 198, 91-99.
https://doi.org/10.1016/j.apcatb.2016.05.047
[26] Zhao, J., Wang, Y., Li, Y.X., Yue, X. and Wang, C.Y. (2016) Phase-Dependent Enhancement for CO2 Photocatalytic Reduction over CeO2/TiO2 Catalysts. Catalysis Science & Tech-nology, 6, 7967-7975.
https://doi.org/10.1039/C6CY01365A
[27] Chowdhury, M., Shoko, S., Cummings, F., Fester, V. and Ojumu, T.V. (2017) Charge Transfer between Biogenic Jarosite Derived Fe3+ and TiO2 Enhances Visible Light Photocatalytic Activity of TiO2. Journal of Environmental Sciences, 54, 256-267.
https://doi.org/10.1016/j.jes.2015.11.038
[28] Chen, G.L., et al. (2017) Exploring the Cooperation Effect of DBD Byproducts and Ag/TiO2 Catalyst for Water Treatment in an APPJ System. Plasma Science and Technology, 19, 68-75.
https://doi.org/10.1088/1009-0630/19/1/015503
[29] 吴宣可. TiO2催化剂的改性及在光解制氢领域的研究综述[J]. 冶金与材料, 2019, 39(6): 17-18.
[30] Thomas, L.H. (1927) The Calculation of Atomic Fields. Mathematical Pro-ceedings of the Cambridge Philosophical Society, 23, 524-548.
https://doi.org/10.1017/S0305004100011683
[31] Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
https://doi.org/10.1103/PhysRev.136.B864
[32] Seidl, A., Görling, A., Vogl, P., Majewski, J.A. and Levy, M. (1996) Generalized Kohn-Sham Schemes and the Band-Gap Problem. Physical Review B, Condensed Matter, 53, 3764-3774.
https://doi.org/10.1103/PhysRevB.53.3764
[33] 李震宇, 贺伟, 杨金龙. 密度泛函理论及其数值方法新进展[J]. 化学进展, 2005, 17(2): 192-202.
[34] 黄美纯. 密度泛函理论的若干进展[J]. 物理学进展, 2000, 20(3): 199-219.
[35] Payne, M.C., Teter, M.P., Allan, D.C., et al. (1992) Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics, 64, 1045-1097.
https://doi.org/10.1103/RevModPhys.64.1045
[36] Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[37] He, Q., Yu, B., Wang, H., et al. (2020) Oxygen Defects Boost Polysulfides Immobilization and Catalytic Conversion: First-Principles Computational Characterization and Experimental Design. Nano Research, 13, 2299-2307.
https://doi.org/10.1007/s12274-020-2850-5
[38] 王黎明. 锐钛矿二氧化钛表面改性相关过程的第一性原理研究[D]: [硕士学位论文]. 开封: 河南大学, 2019.
[39] Deng, D., Zhuo, J., Dong, J., Vincent, M.N. and Ling, Z. (2020) Bi2O2Se as a Novel Co-Catalyst for Photocatalytic Hydrogen Evolution Reaction. Chemical Engineering Journal, 400, Article ID: 125931.
https://doi.org/10.1016/j.cej.2020.125931
[40] Treacy, J.P.W., Hussain, H., Torrelles, X., Grinter, D.C., Cabailh, G., Bikondoa, O., Nicklin, C., Selcuk, S., Selloni, A., Lindsay, R. and Thornton, G. (2017) Geometric Structure of Ana-tase TiO2 (101). Physical Review B: Covering Condensed Matter and Materials Physics, 95, Article ID: 075416.
https://doi.org/10.1103/PhysRevB.95.075416
[41] 张正德, 谈蒙露, 任翠兰, 怀平. VaspCZ: 一个提高效率的VASP计算辅助程序[J]. 核技术, 2020, 43(3): 34-40.
[42] Henkelman, G. and Jonsson, H. (1999) A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. The Journal of Chemi-cal Physics, 111, 7010-7022.
https://doi.org/10.1063/1.480097
[43] Mathew, K., Sundararaman, R., Letchworth-Weaver, K., et al. (2014) Im-plicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways. The Journal of Chemical Physics, 140, Article ID: 084106.
https://doi.org/10.1063/1.4865107
[44] Stoliaroff, A., Jobic, S. and Latouche, C. (2018) PyDEF 2.0: An Easy Touse Post-Treatment Software for Publishable Charts Featuring a Graphical User Interface. Journal of Computational Chemistry, 39, 2251-2261.
https://doi.org/10.1002/jcc.25543
[45] Kohn, W. and Sham, L. (1965) Self-Consistent Equations Including Ex-change and Correlation Effects. Physical Review A, 140, 1133-1138.
https://doi.org/10.1103/PhysRev.140.A1133
[46] Segall, M.D., Lindan, P.J., Probert, M.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[47] 郭美丽. 掺杂二氧化钛的电子结构和光学特性的第一性原理研究[D]: [博士学位论文]. 天津: 天津大学, 2013.
[48] 曹雪娟, 刘誉贵, 刘晓凤, 刘攀, 郭鹏. 稀土Sm掺杂TiO2第一性原理计算及光催化性能评价[J]. 化工新型材料, 2019, 47(10): 180-184.
[49] 刘培思, 代广珍, 韩名君. Au掺杂锐钛矿TiO2的光吸收能力第一性原理计算[J]. 山东师范大学学报(自然科学版), 2020, 35(2): 217-223.
[50] Nazir, B., ur Rehman, U., Arshad, S., et al. (2020) Enhanced Photo-Absorption of Anatase TiO2 with Ni and Eu Doping: A First Principle Study. Materials Today: Proceedings.
https://doi.org/10.1016/j.matpr.2020.05.529
[51] Li, S.L., Chen, Y.C. and Shi, Q.K. (2018) First-Principles Study of Mn-S Codoped Anatase TiO2. Material Research Express, 5, Article ID: 045005.
https://doi.org/10.1088/2053-1591/aab868
[52] 梁坤, 周军, 吴雷, 宋永辉, 田宇红, 付义乐. 分子模拟技术在新型催化剂设计中的应用[J]. 化工新型材料, 2020, 48(2): 41-45+49.
[53] 王宏强. Materials Studio软件在分子力学中的基础应用[J]. 科技资讯, 2019, 17(31): 17-18.
[54] Huerta-Aguilar, C.A., Gutiérrez, Y.S.G. and Thangarasu, P. (2020) Crystal Plane Directed Interaction of TiO2 [101] with AgNPs [111] Silver Nanoparticles Enhancing Solar Light Induced Photo-Catalytic Oxidation of Ciprofloxacin: Experimental and Theoretical Studies. Chemical Engineering Jour-nal, 394, 976-991.
https://doi.org/10.1016/j.cej.2020.124286
[55] 陈奕驰. 量子化学计算原理及其应用[J]. 科学咨询(科技·管理), 2020(1): 110-111.
[56] Bachelet, G.B., Hamann, D.R. and Schlüter, M. (1982) Pseudopotentials That Work: From H to Pu. Physical Review B, 26, 4199-4228.
https://doi.org/10.1103/PhysRevB.26.4199