基于卷积网络的运动想象脑电自制数据集分类算法研究
Research on Classification Algorithm of Self-Made Data Set of Motor Imagination EEG Based on Convolutional Network
摘要: 运动想象脑电信号分类已成为脑计算机接口研究领域的一个热点。本文通过实验室设备进行脑电采集并制作自己的数据集,同时将卷积神经网络与传统方法进行结合,提出了一种基于短时傅里叶变换和连续小波变换对原始数据进行特征提取使用卷积神经网络进行分类的算法。利用特征提取算法提取时频特征制成时频图并使用卷积网络快速学习特征进行分类。试验结果表明,该算法在运动想象脑电公共数据集中有着96%的准确率,在自制数据集上准确率达到92%左右,证明了该算法在运动想象脑电分类上的可行性。
Abstract: Motor imaging EEG signal classification has become a hot spot in the field of brain computer inter-face research. This paper uses laboratory equipment to collect EEG and make its own data set. At the same time, it combines convolutional neural networks with traditional methods to propose a feature extraction method based on short-time Fourier transform and continuous wavelet trans-form. Convolutional neural network classification algorithm uses feature extraction algorithm to extract time-frequency features to make time-frequency map and uses convolutional network to quickly learn features for classification. The test results show that the algorithm has an accuracy rate of 96% in the motor imagery EEG public data set, and the accuracy rate is about 92% on the self-made data set, which proves the feasibility of the algorithm in motor imagery EEG classification.
文章引用:蔡辰玥. 基于卷积网络的运动想象脑电自制数据集分类算法研究[J]. 人工智能与机器人研究, 2021, 10(1): 1-8. https://doi.org/10.12677/AIRR.2021.101001

参考文献

[1] Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N. and Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering, 51, 1034-1043.
https://doi.org/10.1109/TBME.2004.827072
[2] Wolpaw, J. and Wolpaw, E.W. (2012) Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780195388855.001.0001
[3] Huang, C., Shan, X., Lan, Y., Liu, L., Cai, H., Che, W., Hao, Y., Cheng, Y. and Peng, Y. (2018) A Hybrid Active Contour Segmentation Method for Myocardial D-SPECT Images. IEEE Access, 6, 39334-39343.
https://doi.org/10.1109/ACCESS.2018.2855060
[4] Huang, C., Xie, Y., Lan, Y., Hao, Y., Chen, F., Cheng, Y. and Peng, Y. (2018) A New Framework for the Integrative Analytics of Intravascular Ultrasound and Optical Coherence Tomography Images. IEEE Access, 6, 36408-36419.
https://doi.org/10.1109/ACCESS.2018.2839694
[5] 李鹏海, 许敏鹏, 万柏坤, 等. 视觉诱发电位脑-机接口实验范式研究进展[J]. 仪器仪表学报, 2016, 37(10): 2340- 2351.
[6] Dose, H., Møller, J.S., Iversen, H.K., et al. (2018) An End-to-End Deep Learning Approach to MI-EEG Signal Classification for BCIs. Expert Systems with Applications, 114, 1016.
https://doi.org/10.1016/j.eswa.2018.08.031
[7] 葛荣祥, 胡建中. 基于深度学习框架的多类运动想象脑电分类研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(4): 61-66.
[8] D’Croz-Baron, D., Ramirez, J.M., Baker, M., et al. (2012) A BCI Motor Imagery Experiment Based on Parametric Feature Extraction and Fisher Criterion. In: International Conference on Electrical Communications and Computers, IEEE, Cholula, 257-261.
https://doi.org/10.1109/CONIELECOMP.2012.6189920
[9] Jamaloo, F. and Mikaeili, M. (2015) Discriminative Common Spatial Pattern Sub-Bands Weighting Based on Distinction Sensitive Learning Vector Quantization Method in Motor Imagery Based Brain-Computer Interface. Journal of Medical Signals and Sensors, 5, 156-161.
https://doi.org/10.4103/2228-7477.161482
[10] Zhang, Y., Wang, Y., Jin, J., et al. (2017) Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification. International Journal of Neural Systems, 27, Article ID: 1650032.
https://doi.org/10.1142/S0129065716500325
[11] Yuan, H., Doud, A., Gururajan, A., et al. (2008) Cortical Imaging of Event-Related (De)synchronization during Online Control of Brain-Computer Interface Using Minimum-Norm Estimates in Frequency Domain. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 425-431.
https://doi.org/10.1109/TNSRE.2008.2003384
[12] Ramadan, R.A. and Vasilakos, A.V. (2017) Brain Computer Interface: Control Signals Review. Neurocomputing, 223, 26-44.
https://doi.org/10.1016/j.neucom.2016.10.024
[13] Mohamed, S., Haggag, S., Nahavandi, S., et al. (2017) Towards Automated Quality Assessment Measure for EEG Signals. Neurocomputing, 237, 281-290.
https://doi.org/10.1016/j.neucom.2017.01.002
[14] Hettiarachchi, I.T., Babaei, T., Nguyen, T., et al. (2018) A Fresh Look at Functional Link Neural Network for Motor Imagery-Based Brain-Computer Interface. Journal of Neuroscience Methods, 305, 28-35.
https://doi.org/10.1016/j.jneumeth.2018.05.001
[15] Ang, K.K., Chin, Z.Y., Wang, C., et al. (2012) Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b. Frontiers in Neuroscience, 29, 39.
https://doi.org/10.3389/fnins.2012.00039