MFI沸石分子筛膜研究进展
Research Progress of MFI Zeolite Membrane
DOI: 10.12677/MS.2021.112010, PDF, HTML, XML, 下载: 505  浏览: 2,249 
作者: 肖 露*, 苟月华:浙江师范大学含氟新材料研究所,浙江 金华
关键词: MFI沸石分子筛膜膜分离合成方法应用MFI Zeolite Membrane Separation Membrane Synthesis Method Application
摘要: MFI沸石分子筛膜具有独特的孔道结构,在气体分离、液体分离及膜反应器等方面都具有广泛的应用前景,受到众多研究者的关注。本文主要总结几种MFI沸石分子筛膜的合成方法及应用,同时对MFI沸石分子筛膜的未来趋势进行了展望。
Abstract: Due to its unique pore structure, the MFI zeolite membranes have great potential in gas separation, liquid separation and membrane reactors. Thus, the MFI zeolite membranes have attracted the attention of many researchers. This article mainly summarizes the synthesis methods and appli-cations of several MFI zeolite membranes, and also makes a prospect for the future trends of MFI zeolite membranes.
文章引用:肖露, 苟月华. MFI沸石分子筛膜研究进展[J]. 材料科学, 2021, 11(2): 72-82. https://doi.org/10.12677/MS.2021.112010

1. 引言

分离作为最重要的技术之一,为现代世界提供了大量的原料、产品和清洁能源,同时,分离也是调节人为污染物以建立可持续生态系统的有力工具 [1] [2]。但是,通过蒸馏,吸附,萃取和结晶进行的传统分离过程消耗化学工业总能耗的一半,占世界能源消耗的10%~15%,能耗较大 [3] [4]。膜分离是一项具有前瞻性的技术,近年来受到广泛关注。与传统分离相比,膜可以用各种新颖的材料、分层的结构以及多种分离机制之间的协同作用来构造,具有诸如高分离效率、能耗低、占地面积小、碳排放低、相对较高的环境安全性和经济可行性等特点 [5] [6] [7]。

沸石分子筛膜,主要是由于其具有规整的孔道结构、良好的水热稳定性、耐高温高压、耐酸碱腐蚀及择形催化性能等优势,是理想的膜分离材料 [8] [9] [10]。分子筛膜种类繁多,迄今为止研究较多的是MFI沸石分子筛膜,MFI沸石框架中含有两套不同的孔道,即沿着b轴的十元环直孔道,孔径为5.3 Å × 5.6 Å,在a~c平面上且垂直于b轴的十元环正弦孔道,孔径为5.1 Å × 5.5 Å,孔道结构如图1所示 [11]。其孔道尺寸与许多重要化学中间体的尺寸相近,被广泛应用于气体膜分离 [12] [13] [14]、液体膜分离 [15] [16] [17]、膜催化反应器 [18] [19] [20]、光电材料 [21] [22] 以及化学传感器 [23] [24] 等诸多领域。

Figure 1. Schematic diagram of pore structure of MFI zeolite [11]

图1. MFI沸石孔道结构示意图 [11]

近年来,MFI沸石分子筛膜取得较大的进展,MFI分子筛膜的合成及应用一直是研究者关注的热点。根据近些年的研究成果,本文总结了一些MFI沸石分子筛膜的合成方法及应用,并展望了MFI沸石分子筛膜的未来及发展趋势。

2. MFI沸石分子筛膜合成方法

2.1. 原位水热合成法

原位水热合成法是最早开发的合成MFI分子筛膜的方法。原位水热合成法是直接将载体置于一定比例的分子筛合成液中,在一定的温度下进行晶化,直接在载体表面生长一层MFI沸石分子筛膜的方法。沸石膜在水热条件下的形成过程包括基质表面过饱和区的形成、成核、聚集、结晶和晶体生长 [25]。Yan等人 [26] [27] 报道了用原位水热法在光滑不锈钢板上制备高b取向MFI单层膜的方法,所制备的b取向单晶薄膜无缺陷,具有分子筛特性,如图2所示。此方法简单方便,对合成设备要求较低,适用于大规模工艺生产。但此方法通常合成得到的膜较厚,且不能对膜的取向进行调节,同时对载体的要求也较高,重复性也较差。尽管原位结晶技术很简单,但是它受到载体的限制 [28]。例如,尚未实现通过直接原位结晶制备的多孔载体上的b取向膜。

Figure 2. (a) (b) SEM image of MFI zeolite membrane prepared by in-situ hydrothermal synthesis; (c) schematic illustration of molecular sieving in b-oriented MFI monocrystal-thick film [27]

图2. (a) (b)利用原位水热合成法制备的MFI分子筛膜的SEM图;(c) b取向MFI单晶厚膜分子筛分示意图 [27]

2.2. 二次生长法

二次生长法是目前合成MFI分子筛膜最常用的方法。二次生长法是预先在载体上涂覆一层MFI沸石晶种,再将其置于一定比例的分子筛合成液中,在特定温度下进一步进行水热反应合成分子筛膜,其合成过程如图3所示。二次生长法更好地控制成核和晶体生长步骤,可以克服原位水热合成法中不可控的条件,可以通过引导分子筛膜的生长过程,进而对分子筛膜的厚度、取向及形貌等进行调节,同时利用二次生长法合成MFI分子筛膜的重复性较好 [28] [29]。

Pham等人 [11] 在沸石膜的二次生长中取得了非常重要的进展。最近,他们报道了一种无凝胶的二次生长方法。该方法使用少量的结构导向剂,但避开了常规凝胶的二次生长方法。相反,用于二次生长的二氧化硅来源来自载体。Chaikittisilp等人 [30] 公开了这种方法的前体版本,该论文表明,可以通过在TPA+存在下进行汽蒸,将硅片上的非晶硅层转化为MFI。在Pham等人 [31] [32] 的技术中,使用摩擦法将涂有50 nm二氧化硅颗粒层的二氧化硅载体接种到b取向的MFI晶体上。然后将载体用四丙基氢氧化铵溶液浸渍(TPAOH)和氢氧化四乙铵(TEAOH),它们可以充当MFI的结构导向剂。然后将装有SDA的载体密封在高压釜中,并置于190℃的对流烘箱中。加热几个小时后,干燥,煅烧并进行渗透测试。如图4所示,下面的二氧化硅纳米粒子提供了用于沸石种子生长以形成连续膜的二氧化硅源。正如作者所提到的,此方法简单,节省化学药品,最重要的是,保留了方向并可以按比例放大。重要的是要指出,到目前为止,仅对二氧化硅载体和全硅沸石MFI证明了该方法 [33]。

Figure 3. Schematic diagram of secondary growth method [28]

图3. 二次生长法示意图 [28]

Figure 4. Schematic of gel-free secondary growth of seeds by consumption of silica nanoparticles to grow zeolite seeds to a continuous membrane [11]

图4. 通过消耗二氧化硅纳米颗粒使沸石种子生长为连续膜的无凝胶二次生长示意图 [11]

2.3. 微波合成法

微波合成法是近些年发展起来的一种MFI分子筛膜合成方法。即将载体与分子筛合成溶液均置于微波合成仪中,用微波加热代替传统加热方式进行生长制膜。在其过程中,许多无机物与微波场有很强的相互作用,可以在较短的时间内实现快速升温的效果,同时依靠微波加热的高场强和场均匀性,可以显著提高MFI晶种面内生长速率,减少合成时间 [34]。图5示意了采用微波法制备分子筛膜的合成过程。通常利用传统水热合成方法制备得到MFI分子筛膜需要较长的时间(十几个小时及更多时间)和较高的温度(高于100℃),而利用微波加热合成MFI分子筛膜,可以降低反应温度至100℃,且可以将合成时间缩短至几个小时,较好地提高了制膜效率。同时,由于独特的成核瓶颈效应 [35] [36],微波合成法可以有效地抑制孪晶的形成,这有利于制备得到良好共生的、超薄的(厚度小于100 nm)的MFI分子筛膜。Liu等人 [34] 采用微波合成法超薄(小于100 nm)的具有高渗透率和选择性的b取向MFI分子筛膜,其SEM图如图6所示,微波加热将合成时间由传统水热法的12 h缩短至2 h,膜的厚度由传统水热合成的570 nm减小至93 nm,可见采用微波加热是提高膜性能的有效途径。但微波合成法对合成设备要求较高,不能用于大规模批量生产。

Figure 5. Comparison diagram of the synthesis of molecular sieve membranes by hydrothermal synthesis and microwave heating [28]

图5. 水热合成法与微波加热法合成分子筛膜过程的比较示意图 [28]

Figure 6. (a) (b) SEM images of MFI films prepared under traditional convection heating and (c) (d) microwave heating [34]

图6. (a) (b)在传统对流加热和(c) (d)在微波加热下制备得到的MFI膜的SEM图 [34]

原位水热合成法是最简单、最直接的合成MFI沸石分子筛膜的方法,但此方法不易控制MFI沸石分子筛膜的形貌及取向,重复性差,且对载体的要求较高。与原位结晶法相比,二次生长法受载体的影响较小;该方法能够分离成核和生长过程,能够有效地控制MFI沸石膜层的微观结构,但二次生长法依靠人工摩擦或组装来实现种子晶体在平面基底表面的定向加载,合成过程相对较复杂。与原位水热法和二次生长法相比,微波合成法可以大大缩短结晶时间,从而大大降低能耗,对工业化过程具有重要意义,但微波合成法需要特殊的昂贵的微波合成仪,这不利于大规模合成MFI沸石分子筛膜。

3. MFI沸石分子筛膜的应用

MFI沸石分子筛膜具有独特且均一的孔道结构、良好的水热稳定性,其孔道尺寸与许多重要化学中间体的尺寸相近,被广泛地应用于气体分离、油水分离及膜反应器等方面 [37]。

3.1. 气体分离

气体分离是MFI沸石分子筛膜最重要的应用之一。气体混合物的分离在工业过程中至关重要,例如氢气纯化、CO2捕集、丁烷异构体及二甲苯异构体的分离等。相似的分子结构和相似的沸点使得异构体分离相当困难 [38]。MFI沸石膜由于其独特的孔道结构,对丁烷异构体和二甲苯异构体有出色的分离性能 [11] [39]。利用无凝胶的二次生长技术,以沸石纳米片单层作为种子层制备得到的MFI膜,对二甲苯异构体的分离体现出空前的选择性,对二甲苯/邻二甲苯(0.58 nm/0.68 nm)分离因子超过10,000,对二甲苯的通透通量达到2.7 × 10−7 mol (m2s Pa) −1,如图7所示 [40]。Nair等利用MFI沸石纳米片膜对正丁烷(0.43 nm)/正丁烷(0.53 nm)进行分离,显示出382 GPU优异的正丁烷渗透性能,正丁烷/正丁烷分离系数高达42 [41]。

Figure 7. Schematic diagram of separation performance of MFI zeolite membrane for xylene isomers [40]

图7. MFI沸石膜对二甲苯异构体的分离性能示意图 [40]

3.2. 油水分离

液体分离亦可以通过MFI分子筛膜进行,通常是通过液体混合物分子的离子直径、极性差异或者通过油水混合物亲疏水性进行多元液体组分的分离。全硅MFI沸石膜仅以二氧化硅四面体为基本结构,具有疏水性且优先吸附乙醇的特点。因此,非常适合通过基于MFI沸石膜的全蒸发技术纯化乙醇。Zhang等人 [42] 以α-Al2O3管为载体,利用二元结构导向剂(TBA+ + TPA+)制备得到高质量的乙醇渗透选择性MFI沸石膜,对于8 wt%乙醇/水混合物,乙醇的通量为1.52 kg m−2 h−1,乙醇/水分离系数为86。迄今为止,研究者们在MFI沸石分子筛膜的制备及将其应用于分离乙醇/水混合物方面做了大量工作,如表1所示。

3.3. 膜催化反应器

膜反应器是强化化学过程的概念之一。(催化)膜反应器将化学反应和原位分离结合在一个单元中。催化膜反应器按其功能可分为(i)萃取式反应器、(ii)分配器式反应器和(iii)接触式反应器。萃取方式特别要求较高的分离选择性,沸石分子筛膜可以提供这种选择性。除了分子筛的功能外,沸石膜在大多数化学反应的温度下是相对稳定的,与有机聚合物膜相比,它们对溶剂是稳定的。过去,如果在平衡控制的反应条件下,能有选择地从产物混合物中除去产物分子(氢或水),则脱氢或酯化反应的产率提高的例子有很多 [33]。

Table 1. Separation performance of MFI zeolite membranes used to separate ethanol/water mixture in the literature

表1. 文献中用于分离乙醇/水混合物的MFI膜的分离性能

催化裂化沉积(CCD)修饰的MFI膜在催化高温水煤气变换(WGS)反应器中得到了成功的评价 [53]。尽管氢选择性相对较弱( a H 2 / C O 2 31 , a H 2 / C O 25 ),但在热力学极限之外,CO转化率仍可提高。通过CCD焦化修饰的MFI膜也成功地在低温WGS反应中进行了评估,以克服平衡约束(图8) [54]。

Figure 8. Schema of a membrane supported water-gas shift reaction: In an extractor-type membrane reactor, hydrogen is selectively removed through an MFI membrane modified by coking [55]

图8. 膜支撑的水煤气变换反应模式:在萃取式膜反应器中,通过焦化修饰的MFI膜选择性地去除氢 [55]

3.4. 光电材料

在多孔载体(氧化铝、氧化硅等)上生长得到的MFI沸石分子筛膜可以应用于分离膜或膜反应器,而在致密载体(硅片)表面生长制备的薄膜可以应用于光电材料等 [55]。Yan等首先在硅片载体表面使用原位水热法制备出取向性的MFI型分子筛膜,并测定其低介电常数(Low-k) [56]。之后,该课题组进行不断的优化制备方法,制备得到具有更高机械强度、更低的介电常数和低的湿度灵敏性的纯硅MFI型分子筛膜,该材料具有更低的介电常数(k < 2.1) [57]。该材料具有优越的优势去替代目前半导体工业使用的致密二氧化硅绝缘体(k = 4)。

3.5. 化学传感器

多孔材料,特别是具有有序和均匀孔道网络的MFI沸石多孔材料,在传感方面显示了巨大的应用潜力。MFI沸石层可以作为屏障,选择性地限制气体暴露在传感表面或富集特定的分析物,增强对小分子的选择性检测。Vilaseca等人 [58] 将MFI或者LTA分子筛膜负载在半导体微传感器(Pd/SnO2)上,发现这种进行这种改进后的传感器可以用来探测乙醇、甲烷、丙烷等气体(图9)。Gora等人 [24] 将单晶、薄的b取向silicalite-1薄膜涂在磁弹性梅格拉斯带(magneto-elastic Metglas® ribbon)上,制成了新型气体传感器,该传感器已被证明成功地检测空气中的二氧化碳,并能够区分异丁烷和正丁烷。

Figure 9. Semiconductor micro-sensor loaded with zeolite membrane [58]

图9. 负载有分子筛膜的半导体微传感器 [58]

4. 总结与展望

近些年来,MFI沸石膜的研制取得了很大的进展,MFI沸石分子筛膜的独特孔道结构及其优异性能使其在气体分离、油水分离及膜反应器等方面得到广泛应用,但仍然存在许多亟待解决的问题。目前制备MFI沸石分子筛膜,大多采用硅片、不锈钢、氧化铝、二氧化硅或石英棉支撑体,这些支撑体价格较昂贵且大多表面不够光滑平整,不利于MFI沸石膜的生长,因此如何对载体进行修饰或寻找更便宜的支撑体仍是需要研究的方向。MFI沸石分子筛膜合成过程中的生长机理仍需要进一步探索,这将有利于合成高质量的MFI沸石分子筛膜 [37]。MFI沸石膜在工业上还没有被大量运用,支撑体与模板剂是仍是制备MFI沸石支撑膜成本较高的主要原因,寻找更加廉价的支撑体与模板剂,这对于未来MFI沸石膜的大规模应用具有重要意义 [33]。

参考文献

[1] Dou, H., Jiang, B., Xu, M., et al. (2019) Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation. Angewandte Chemie International Edition, 58, 13969-13975.
https://doi.org/10.1002/anie.201907773
[2] Zhao, X., Wang, Y., Li, D.S., et al. (2018) Metal-Organic Frame-works for Separation. Advanced Materials, 30, Article ID: 1705189.
https://doi.org/10.1002/adma.201705189
[3] Dou, H., Jiang, B., Xu, M., et al. (2018) Supported Ionic Liquid Membranes with High Carrier Efficiency via Strong Hydrogen-Bond Basicity for the Sustainable and Effective Ole-fin/Paraffin Separation. Chemical Engineering Science, 193, 27-37.
https://doi.org/10.1016/j.ces.2018.08.060
[4] Ma, X., Chai, Y., Li, P. and Wang, B. (2019) Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Accounts of Chemical Research, 52, 1461-1470.
https://doi.org/10.1021/acs.accounts.9b00113
[5] Babu, D.J., He, G., Hao, J., et al. (2019) Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture. Advanced Materials, 31, Article ID: 1900855.
https://doi.org/10.1002/adma.201900855
[6] Qiao, Z., Zhao, S., Sheng, M., et al. (2019) Metal-Induced Ordered Microporous Polymers for Fabricating Large-Area Gas Separation Membranes. Nature Materials, 18, 163-168.
https://doi.org/10.1038/s41563-018-0221-3
[7] Jiang, B., Zhang, N., Zhang, L., et al. (2018) Enhanced Separation Performance of PES Ultrafiltration Membranes by Imidazole-Based Deep Eutectic Solvents as Novel Functional Additives. Journal of Membrane Science, 564, 247-258.
https://doi.org/10.1016/j.memsci.2018.07.034
[8] Davis, M. (2002) Ordered Porous Materials for Emerging Ap-plications. Nature, 417, 813-821.
https://doi.org/10.1038/nature00785
[9] 徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
[10] Baerlocher, C., Meier, W.M. and Olson, D.H. (2001) Preface. In: Atlas of Zeolite Framework Types, Elsevier, Amsterdam, 1-2.
https://doi.org/10.1016/B978-044450701-3/50000-8
[11] Pham, T.C.T., Nguyen, T.H. and Yoon, K.B. (2013) Gel-Free Secondary Growth of Uniformly Oriented Silica MFI Zeolite Films and Application for Xylene Separation. Angewandte Chemie International Edition, 52, 8693-8698.
https://doi.org/10.1002/anie.201301766
[12] Lai, Z., Bonilla, G., Diaz, I., et al. (2003) Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science, 300, 456-460.
[13] Lai, Z., Tsapatsis, M. and Nicolich, J.P. (2004) Siliceous ZSM-5 Membranes by Secondary Growth of b-Oriented Seed Layers. Advanced Functional Materials, 14, 716-729.
https://doi.org/10.1002/adfm.200400040
[14] Choi, J., Jeong, H.-K., Snyder, M.A., et al. (2009) Grain Boundary Defect Elimination in a Zeolite Membrane by Rapid Thermal Processing. Science, 325, 590-593.
https://doi.org/10.1126/science.1176095
[15] Bowen, T.C., Noble, R.D. and Falconer, J.L. (2004) Fundamentals and Applications of Pervaporation through Zeolite Membranes. Journal of Membrane Science, 245, 1-33.
https://doi.org/10.1016/j.memsci.2004.06.059
[16] Wee, S.-L., Tye, C.-T. and Bhatia, S. (2008) Membrane Sep-aration Process—Pervaporation through Zeolite Membrane. Separation and Purification Technology, 63, 500-516.
https://doi.org/10.1016/j.seppur.2008.07.010
[17] Yuan, W., Lin, Y.S. and Yang, W. (2004) Molecular Sieving MFI-Type Zeolite Membranes for Pervaporation Separation of Xylene Isomers. Journal of the American Chemical So-ciety, 126, 4776-4777.
https://doi.org/10.1021/ja031653t
[18] McLeary, E.E., Jansen, J.C. and Kapteijn, F. (2006) Zeolite Based Films, Membranes and Membrane Reactors: Progress and Prospects. Microporous and Mesoporous Ma-terials, 90, 198-220.
https://doi.org/10.1016/j.micromeso.2005.10.050
[19] Pilar Bernal, M., Coronas, J.N., Menéndez, M. and San-tamarı́a, J. (2002) Coupling of Reaction and Separation at the Microscopic Level: Esterification Processes in a H-ZSM-5 Membrane Reactor. Chemical Engineering Science, 57, 1557-1562.
https://doi.org/10.1016/S0009-2509(02)00030-1
[20] Lang, L., Liu, X., Hu, M., et al. (2009) Highly Enhanced Phenol Hydroxylation in [h0h]-Oriented Fe-ZSM-5 Membranes. ChemCatChem, 1, 472-478.
https://doi.org/10.1002/cctc.200900152
[21] Zabala Ruiz, A., Li, H. and Calzaferri, G. (2006) Organizing Su-pramolecular Functional Dye-Zeolite Crystals. Angewandte Chemie International Edition, 45, 5282-5287.
https://doi.org/10.1002/anie.200504286
[22] Kim, H.S., Pham, T.T. and Yoon, K.B. (2008) Aligned Inclusion of Dipolar Dyes into Zeolite Channels by Inclusion in the Excited State. Journal of the American Chemical Society, 130, 2134-2135.
https://doi.org/10.1021/ja0774820
[23] Wee, L.H., Wang, Z., Tosheva, L., et al. (2008) Silicalite-1 Films with Preferred Orientation. Microporous and Mesoporous Materials, 116, 22-27.
https://doi.org/10.1016/j.micromeso.2008.03.011
[24] Gora, L., Kuhn, J., Baimpos, T., et al. (2009) Selective Sensor Utilizing a Thin Monolayer of b-Oriented Silicalite-1 Crystals-Magneto-Elastic Ribbon Assembly. Analyst, 134, 2118-2122.
https://doi.org/10.1039/b905039f
[25] Khulbe, K.C., Matsuura, T., Feng, C.Y. and Ismail, A.F. (2016) Recent Development on the Effect of Water/Moisture on the Performance of Zeolite Membrane and MMMs Containing Zeolite for Gas Separation: Review. RSC Advances, 6, 42943-42961.
https://doi.org/10.1039/C6RA03007F
[26] Li, S., Demmelmaier, C., Itkis, M., et al. (2003) Micropatterned Oriented Zeolite Monolayer Films by Direct in Situ Crystallization. Chemistry of Materials, 15, 2687-2689.
https://doi.org/10.1021/cm034362s
[27] Li, S., Wang, X., Beving, D., et al. (2004) Molecular Sieving in a Nanoporous b-Oriented Pure-Silica-Zeolite MFI Monocrystal Film. Journal of the American Chemical Society, 126, 4122-4123.
https://doi.org/10.1021/ja031985y
[28] 张聪. Silicalite-1分子筛膜的制备及气体分离性能研究[D]: [硕士学位论文]. 长春: 吉林大学, 2012.
[29] 刘洋. 取向ZSM-5分子筛膜的制备及其分离性能研究[D]: [硕士学位论文]. 银川: 宁夏大学, 2019.
[30] Chaikittisilp, W., Davis, M.E. and Okubo, T. (2007) TPA+-Mediated Conversion of Silicon Wafer into Preferentially-Oriented MFI Zeolite Film under Steaming. Chemistry of Materials, 19, 4120-4122.
https://doi.org/10.1021/cm071475t
[31] Pham, T.C.T., Kim, H.S. and Yoon, K.B. (2011) Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science, 334, 1533-1538.
https://doi.org/10.1126/science.1212472
[32] Lee, J.S., Kim, J.H., Lee, Y.J., Jeong, N.C. and Yoon, K.B. (2007) Manual Assembly of Microcrystal Monolayers on Substrates. Angewandte Chemie International Edition, 46, 3087-3090.
https://doi.org/10.1002/anie.200604367
[33] Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. and Tsapatsis, M. (2015) Zeolite Membranes—A Review and Comparison with MOFs. Chemical Society Reviews, 44, 7128-7154.
https://doi.org/10.1039/C5CS00292C
[34] Liu, Y., Qiang, W., Ji, T., et al. (2020) Uniform Hierarchical MFI Nanosheets Prepared via Anisotropic Etching for Solution-Based Sub-100-nm-Thick Oriented MFI Layer Fabrication. Science Advances, 6, eaay5993.
https://doi.org/10.1126/sciadv.aay5993
[35] Liu, Y., Li, Y., Cai, R. and Yang, W.S. (2012) Suppression of Twins in b-Oriented MFI Molecular Sieve Films under Microwave Irradiation. Chemical Communications, 48, 6782-6784.
https://doi.org/10.1039/c2cc18111h
[36] Li, X., Yan, Y. and Wang, Z. (2010) Continuity Control of b-Oriented MFI Zeolite Films by Microwave Synthesis. Industrial & Engineering Chemistry Research, 49, 5933-5938.
https://doi.org/10.1021/ie1000136
[37] 郎林, 张超, 阴秀丽, 等. b-轴取向MFI型分子筛膜制备工艺[J]. 化学进展, 2011, 23(5): 1022-1032.
[38] Dou, H., Xu, M., Wang, B., et al. (2021) Microporous Framework Membranes for Precise Molecule/Ion Separations. Chemical Society Reviews, 50, 986-1029.
https://doi.org/10.1039/D0CS00552E
[39] Kumar, P., Kim, D.W., Rangnekar, N., et al. (2020) One-Dimensional Intergrowths in Two-Dimensional Zeolite Nanosheets and Their Effect on Ultra-Selective Transport. Nature Materials, 19, 443-449.
https://doi.org/10.1038/s41563-019-0581-3
[40] Kim, D., Jeon, M.Y., Stottrup, B.L. and Tsapatsis, M. (2018) Para-Xylene Ultra-Selective Zeolite MFI Membranes Fabricated from Nanosheet Monolayers at the Air-Water Interface. Angewandte Chemie International Edition, 57, 480-485.
https://doi.org/10.1002/anie.201708835
[41] Min, B., Yang, S., Korde, A., et al. (2019) Continuous Zeolite MFI Membranes Fabricated from 2D MFI Nanosheets on Ceramic Hollow Fibers. Angewandte Chemie International Edition, 58, 8201-8205.
https://doi.org/10.1002/anie.201903554
[42] Lan, J., Wu, H., Saulat, H., et al. (2020) Synthesis of Ethanol Perm-Selective MFI Zeolite Membranes by Binary Structure Directing Agents. Journal of Membrane Science, 598, Article ID: 117647.
https://doi.org/10.1016/j.memsci.2019.117647
[43] Sano, T., Yanagishita, H., Kiyozumi, Y., Mizukami, F. and Haraya, K. (1994) Separation of Ethanol/Water Mixture by Silicalite Membrane on Pervaporation. Journal of Membrane Science, 95, 221-228.
https://doi.org/10.1016/0376-7388(94)00120-0
[44] Lin, X., Chen, X., Kita, H. and Okamoto, K. (2003) Synthesis of Silicalite Tubular Membranes by in Situ Crystallization. AIChE Journal, 49, 237-247.
https://doi.org/10.1002/aic.690490122
[45] Elyassi, B., Jeon, M.Y., Tsapatsis, M., et al. (2016) Ethanol/Water Mixture Pervaporation Performance of b-Oriented Silicalite-1 Membranes Made by Gel-Free Secondary Growth. AIChE Journal, 62, 556-563.
https://doi.org/10.1002/aic.15124
[46] Ueno, K., Negishi, H., Okuno, T., et al. (2017) High-Performance Silicalite-1 Membranes on Porous Tubular Silica Supports for Separation of Ethanol/Water Mixtures. Separation and Purification Technology, 187, 343-354.
https://doi.org/10.1016/j.seppur.2017.06.071
[47] Xia, S., Peng, Y. and Wang, Z. (2016) Microstructure Manipulation of MFI-Type Zeolite Membranes on Hollow Fibers for Ethanol-Water Separation. Journal of Membrane Science, 498, 324-335.
https://doi.org/10.1016/j.memsci.2015.10.024
[48] Shu, X., Wang, X., Kong, Q., Gu, X. and Xu, N. (2012) High-Flux MFI Zeolite Membrane Supported on YSZ Hollow Fiber for Separation of Ethanol/Water. Industrial & Engineering Chemistry Research, 51, 12073-12080.
https://doi.org/10.1021/ie301087u
[49] Lin, X., Kita, H. and Okamoto, K.-I. (2001) Silicalite Membrane Preparation, Characterization, and Separation Performance. Industrial & Engineering Chemistry Research, 40, 4069-4078.
https://doi.org/10.1021/ie0101947
[50] Peng, Y., Lu, H., Wang, Z. and Yan, Y. (2014) Microstructural Optimization of MFI-Type Zeolite Membranes for Ethanol-Water Separation. Journal of Materials Chemistry A, 2, 16093-16100.
https://doi.org/10.1039/C4TA02837F
[51] Peng, Y., Zhan, Z., Shan, L., et al. (2013) Preparation of Zeolite MFI Membranes on Defective Macroporous Alumina Supports by a Novel Wetting-Rubbing Seeding Method: Role of Wetting Agent. Journal of Membrane Science, 444, 60-69.
https://doi.org/10.1016/j.memsci.2013.05.013
[52] Chai, L., Yang, J., Wang, J., et al. (2016) Ethanol Perm-Selective B-ZSM-5 Zeolite Membranes from Dilute Solutions. AIChE Journal, 62, 2447-2458.
https://doi.org/10.1002/aic.15214
[53] Kim, S.-J., Yang, S., Reddy, G.K., Smirniotis, P. and Dong, J. (2013) Zeolite Membrane Reactor for High-Temperature Water-Gas Shift Reaction: Effects of Membrane Properties and Operating Conditions. Energy & Fuels, 27, 4471-4480.
https://doi.org/10.1021/ef302014n
[54] Zhang, Y., Wu, Z., Hong, Z., Gu, X. and Xu, N. (2012) Hydrogen-Selective Zeolite Membrane Reactor for Low Temperature Water Gas Shift Reaction. Chemical Engineering Journal, 197, 314-321.
https://doi.org/10.1016/j.cej.2012.05.064
[55] 路晓飞. 微结构可控的MFI型分子筛膜制备及性能研究[D]: [博士学位论文]. 杭州: 浙江大学, 2019.
[56] Li, Z., Johnson, M., Sun, M., et al. (2006) Mechanical and Dielectric Properties of Pure-Silica-Zeolite Low-k Materials. Angewandte Chemie International Edition, 45, 6329-6332.
https://doi.org/10.1002/anie.200602036
[57] Li, Z.J., Li, S., Luo, H.M. and Yan, Y.S. (2004) Effects of Crystallinity in Spin-On Pure-Silica-Zeolite MFI Low-Dielectric-Constant Films. Advanced Functional Materials, 14, 1019-1024.
https://doi.org/10.1002/adfm.200305147
[58] Vilaseca, M., Coronas, J., Cirera, A., et al. (2003) Use of Zeolite Films to Improve the Selectivity of Reactive Gas Sensors. Catalysis Today, 82, 179-185.
https://doi.org/10.1016/S0920-5861(03)00230-X