建模与仿真  >> Vol. 10 No. 1 (February 2021)

微型燃烧器扩展角对氢气/空气预混燃烧特性影响的模拟研究
Simulation Study on the Influence of Micro Burner Expansion Angle on Hydrogen/Air Premixed Combustion Characteristics

DOI: 10.12677/MOS.2021.101010, PDF, HTML, XML, 下载: 70  浏览: 129 

作者: 王 卓, 王 波*, 刘梦辉, 孙成喜:上海理工大学能源与动力工程学院,上海;俞志鹏, 姬 鹏:上海船用柴油机研究所,上海

关键词: 微型燃烧器扩展角入口速度最高燃烧温度Micro Burner Expansion Angle Inlet Velocity Maximum Combustion Temperature

摘要: 基于建立的三维微型燃烧器模型,选用氢气体积分数为10%的预混气,对长度100 mm,扩展角分别为0˚、0.36˚、0.72˚的微型燃烧器内氢气/空气的预混燃烧过程进行模拟研究。研究发现,对方形微通道燃烧器,在相同的燃烧器长度、外壁边长和进口尺寸下,扩展角越大的燃烧器,速度极限范围越大。当入口速度较低时,扩展角越大,火焰传播速度越低,最高燃烧温度越高;当入口速度较高,燃气充分燃烧时,扩展角的大小对最高燃烧温度几乎没有影响。
Abstract: Based on the established three-dimensional model of the microburner, the premixed combustion process of hydrogen/air in a 100 mm long microburner with expansion angles of 0˚, 0.36˚ and 0.72˚ was simulated with 10% hydrogen volume fraction. It is found that for square micro-channel burners, with the same burner length, outer wall length and inlet size, the larger the burner ex-pansion angle, the larger the speed limit range. When the inlet velocity is low, the larger the spreading angle is, the lower the flame propagation velocity is, and the higher the maximum com-bustion temperature is; when the inlet velocity is high and the gas is fully burned, the expansion angle has little effect on the maximum combustion temperature.

文章引用: 王卓, 俞志鹏, 姬鹏, 王波, 刘梦辉, 孙成喜. 微型燃烧器扩展角对氢气/空气预混燃烧特性影响的模拟研究[J]. 建模与仿真, 2021, 10(1): 93-106. https://doi.org/10.12677/MOS.2021.101010

参考文献

[1] 张冬至, 胡国清. 微机电系统关键技术及其研究进展[J]. 压电与声光, 2010, 32(3): 513-520.
http://dx.chinadoi.cn/10.3969/j.issn.1004-2474.2010.03.051
[2] 邵霞, 潘剑锋, 唐爱坤, 胡松, 侯智勇. 微尺度催化燃烧表面反应对气相反应的影响[J]. 农业机械学报, 2015, 46(12): 391-396.
http://dx.chinadoi.cn/10.6041/j.issn.1000-1298.2015.12.053
[3] 刘子琨. 微尺度平板燃烧器中甲烷、二甲醚催化燃烧研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2017.
[4] Chen, G.B., Chen, C.P., Wu, C.Y. and Chao, Y.-C. (2007) Effects of Catalytic Walls on Hydrogen/Air Combustion Inside a Micro-Tube. Applied Catalysis A: General, 332, 89-97.
https://doi.org/10.1016/j.apcata.2007.08.011
[5] Zhong, B.J. and Wang, J.H. (2010) Experimental Study on Premixed CH4/Air Mixture Combustion in Micro Swiss-Roll Combustors. Combustion and Flame, 157, 2222-2229.
https://doi.org/10.1016/j.combustflame.2010.07.014
[6] 李军伟, 钟北京, 王宁飞, 魏志军. 空气槽对微型双通道螺旋型过量焓燃烧器工作特性的影响[J]. 中国电机工程学报, 2010, 30(2): 40-45.
[7] 刘伟, 陈琪. Swiss-Roll型微燃烧器的燃烧数值模拟[J]. 工业加热, 2013, 42(3): 27-28, 39.
http://dx.chinadoi.cn/10.3969/j.issn.1002-1639.2013.03.009
[8] Yang, W.M., Chou, S.K., Shu, C., Li, Z.W. and Xue, H. (2002) Combustion in Micro-Cylindrical Combustors with and without a Backward Facing Step. Applied Thermal Engineering, 22, 1777-1787.
https://doi.org/10.1016/S1359-4311(02)00113-8
[9] Yang, W.M., Chou, S.K., Shu, C., Li, Z.W. and Xue, H. (2005) Study of Catalytic Combustion and Its Effect on Microthermophotovoltaic Power Generators. Journal of Physics D: Applied Physics, 38, 4252.
https://doi.org/10.1088/0022-3727/38/23/018
[10] Yang, W.M., Chou, S.K., Shu, C., Li, Z.W., Xue, H., Li, D.T., et al. (2003) Microscale Combustion Research for Application to Micro Thermophotovoltaic systems. Energy Conver-sion and Management, 44, 2625-2634.
https://doi.org/10.1016/S0196-8904(03)00024-4
[11] 邓尘, 杨卫娟, 王威, 周俊虎, 刘建忠, 岑可法. 微型缩放喷管中氢气/空气预混燃烧实验研究[J]. 中国电机工程学报, 2013, 34(2): 260-265.
http://dx.chinadoi.cn/10.13334/j.0258-8013.pcsee.2014.02.007
[12] Giovangigli, V. and Smooke, M.D. (1987) Extinction of Strained Premixed Laminar Flames with Complex Chemistry. Combustion Science and Technology, 53, 23-49.
https://doi.org/10.1080/00102208708947017
[13] Tang, A.K., Xu, Y.M., Shan, C.X., Pan, J.F. and Liu, Y.X. (2015) A Comparative Study on Combustion Characteristics of Methane, Propane and Hydrogen Fuels in a Mi-cro-Combustor. International Journal of Hydrogen Energy, 40, 16587-16596.
https://doi.org/10.1016/j.ijhydene.2015.09.101
[14] Norton, D.G. and Vlachos, D.G. (2003) Combustion Char-acteristics and Flame Stability at the Microscale: A CFD Study of Premixed Methane/Air Mixtures. Chemical Engi-neering Science, 58, 4871-4882.
https://doi.org/10.1016/j.ces.2002.12.005
[15] Norton, D.G. and Vlachos, D.G. (2004) A CFD Study of Pro-pane/Air Microflame Stability. Combustion and Flame, 138, 97-107.
https://doi.org/10.1016/j.combustflame.2004.04.004