氮添加对早春草本植物主要功能性状的影响研究进展
Research Progress on the Effect of Nitrogen Addition on Main Functional Characters of Early Spring Herbaceous Plants
DOI: 10.12677/IJE.2021.101014, PDF, HTML, XML,  被引量 下载: 389  浏览: 778 
作者: 周 钧, 王庆贵*:黑龙江大学现代农业与生态环境学院,黑龙江 哈尔滨
关键词: 氮沉降早春草本植物内在机理养分循环研究进展Nitrogen Deposition Early Spring Herb Internal Mechanism Nutrient Cycle Research Progress
摘要: 早春草本植物作为林下生态片层的重要组成部分,尽管其在森林总生物量和生产力中所占的比例相对较小,但它会影响冠层树木的再生并有助于森林生态系统的整体碳平衡,对整个森林生态系统平衡和养分循环产生重要作用。随着氮沉降的日益增加,早春草本植物的生长过程受到影响,但其内在的生长策略变化机理尚不明确。同时,基于早春草本植物独特的生态位,其养分循环的变化将很可能导致整个森林生态系统失衡。因此,本文重在总结前人的研究,探讨早春草本植物在氮添加条件下的生长策略及养分循环的变化,为研究早春植物对整个森林生态系统平衡的作用提供基础理论支持,并指出该领域未来可能的研究方向。
Abstract: Early spring herbs are an important part of understory ecosystem. Although they account for a relatively small proportion of total forest biomass and productivity, they can affect the regeneration of canopy trees, contribute to the overall carbon balance of forest ecosystem, and play an important role in the balance and nutrient cycle of the whole forest ecosystem. With the increasing of nitrogen deposition, the growth process of early spring herbaceous plants was affected, but the mechanism of the internal growth strategy change was not clear. At the same time, due to the unique niche of early spring herbaceous plants, the change of nutrient cycle is likely to lead to the imbalance of the whole forest ecosystem. Therefore, this paper focuses on the summary of previous studies, discusses the growth strategy and nutrient cycle changes of early spring herbaceous plants under the condition of nitrogen addition, provides basic theoretical support for the study of the effect of early spring plants on the balance of the entire forest ecosystem, and points out the possible research directions in this field in the future.
文章引用:周钧, 王庆贵. 氮添加对早春草本植物主要功能性状的影响研究进展[J]. 世界生态学, 2021, 10(1): 129-137. https://doi.org/10.12677/IJE.2021.101014

1. 引言

1.1. 氮沉降研究现状

由于人类活动的影响导致全球活性氮增加,大气氮沉降速率不断升高 [1]。在这个过程中,全球氮沉降的分布中心逐步发生了变化,我国变成了全球大气氮沉降速率最高的三大地区之一。大气氮沉降速率指的是某个地区单位面积上每年因大气氮沉降所增加的氮通量,表明大气通过降尘或者降雨的形式将氮返还给陆地的快慢程度 [2] [3] [4]。大气氮沉降速率越高,单位面积上所接受的氮通量越多,对陆地生态系统所产生的威胁越大 [5]。通过量化植被对氮沉降的影响,并对氮沉降速率进行模拟,我们可以准确反映氮沉积对环境的压力,加深了我们对目标区氮沉降的大小、路径和种类的时空变化的理解,不仅对保护和调控机构具有重要意义,而且对开展进一步的详细研究也具有重要意义 [6]。

随着研究的不断进展,Peñuelas等人发现在增氮初期植物受氮限制影响,而随着施氮的不断增加,植物的综合生产力得到提高。这对整个森林的生产和发展起到了一定的积极作用。然而随着氮的继续增加则产生了一系列的负面影响 [7]。这些负面影响包括许多自然栖息地的生物多样性降低 [8] 以及植物养分的吸收和分配过程发生变化 [9],这将导致森林生态系统养分(例如氮和磷)失衡 [10],其碳动态也会发生变化 [11]。森林生产力的发展和陆地生态系统都将受到氮沉降增加的极大影响 [12]。因而针对氮沉降速率增加引起的环境问题进行深入研究是十分必要的。然而先前的研究主要集中在多年生乔木,对早春草本植物关注不足,对其内在变化机理以及养分循环变化都未涉及,因而今后的研究应考虑早春草本植物这一基础而又不可或缺的部分,以便更好地预测生态系统的养分循环 [13]。

1.2. 早春草本植物研究现状

森林是世界生物多样性分布的中心,在陆地生态系统中占有重要的地位 [14],其物种多样、植被类型丰富、结构复杂 [15],因此,维持森林生态系统养分循环的平衡至关重要 [16]。

早春草本植物作为林下片层的重要组成部分,因其独特的生态位为整个森林的复苏做出重要贡献。早春位于冬春两季之间,正值冰雪初融,地表径流变大,冲刷大量养分。在这一过程中,早春草本植物开始生长,涵养水分 [17]。在早春草本植物生长过程中,光照充足,光合作用强烈,可以贮存充足的碳氮等养分,同时为森林生态系统的复苏提供了最基础的养分支持 [18]。在全球氮沉降增加的背景下,早春草本植物的生长策略可能会受到影响,进而影响森林生态系统的养分循环。现阶段针对早春草本植物对氮沉降响应的研究较少,因此,本文通过论述氮沉降对早春草本植物生长策略和养分循环的影响,总结前人研究结果,深入分析氮沉降对早春草本植物生长过程的改变,为日后的相关研究提供理论指导。

2. 氮添加对早春草本植物生长策略的影响

2.1. 氮沉降对早春草本植物生物量分配的影响

一些研究表明氮沉降对植物有多种影响 [19],影响之一就是会造成植物器官生物量的变化 [20]。这些植物器官生物量的变化将对碳分布产生重要影响,并可能对整个森林生态系统碳的分布产生深远的影响 [21]。

研究表明,植物器官的生物量是由适应氮沉降的光合产物分配决定的,而氮沉降将影响光合产物在地上和地下成分的长寿命和短寿命组织在呼吸作用和生物量生产之间的分配 [22]。许多研究者通过对大量植物地上和地下器官之间生物量的研究对比得出结论,氮对碳在不同植物器官中分配的影响一般支持功能平衡假说 [23] [24],这个假说主要是说当植物的生长受到某种因素限制时,植物会优先将光合产物分配给吸收该资源的器官。然而,其他研究者认为源库关系假说更好地描述了氮对各种植物器官中碳分配的影响 [25]。这个假说认为,植物是一个由源与叶、汇与茎、根与果相互作用的系统。源通过韧皮部运输提供所需的同化物,库通过与其他库器官竞争获得同化物。然而,不同器官之间的生物量变化,如叶与枝之间、根与叶之间、根与细根之间的变化如何符合各种假说尚不清楚。因此,研究早春草本植物的生物量分配的变化,探讨其相关的分配策略,对研究其养分循环变化具有重大意义。

2.2. 氮沉降对早春草本植物根系形态性状的影响

植物根系作为陆地生态系统养分循环的重要组成部分,不仅为植物的生长发育提供水分和养分,还通过根系呼吸和根系死亡进行碳的释放。而大气氮沉降通过损伤组织直接影响植物根系,并通过改变土壤的氮素有效性间接影响植物根系 [26]。因此,研究植物根系在氮沉降背景下的变化,对研究植物碳循环机制具有重要意义。

土壤氮素有效性对植物根系动态有重要影响 [27]。许多研究表明,细根生物量随着氮素利用率的增加而下降 [28]。土壤氮有效性的增加改变了根系碳氮比,进而影响了地下生物量的碳积累。此外,土壤氮有效性的增加还有可能导致其他养分限制(例如磷) [29]。

细根通过吸收水分、养分和释放根际分泌物维持着森林生态系统碳氮循环的平衡。在养分限制的情况下,植物通过增加根系建设碳投入来调整整个植株水平上的生物量分配。同时,通过提高吸收根(即前两级根)占总细根(即直径 ≤ 2 mm)生物量的百分比来调整生物量分配来缓解养分限制 [30]。这种调整可以扩大根系探索土壤的体积,进而提高养分吸收数量和速率,特别是对P这种低流动性的养分吸收 [31]。此外在土壤养分限制下,根系形态可塑性使植物可以在根系生物量保持不变的情况下提高单位土壤面积的根表面积 [32]。随着土壤磷有效性的降低,根系直径减小,比表面积增加 [33]。除了根系本身之外,植物还可以通过与菌根真菌形成共生体来吸收磷,菌根真菌可以通过根外菌丝体从根部周围的磷缺失区吸收磷 [34]。然而植物根系和菌根真菌周围的环境容易受到大气氮沉降引起的土壤酸化影响 [35]。大气氮沉降下,多种很难量化的因素交互影响早春植物的根系,因此通过探索模拟氮沉降对早春植物根系性状的影响可能会进一步推动我们对森林生态系统碳循环的潜在机制的理解。

3. 氮沉降对早春草本植物养分生理的影响

3.1. 氮沉降对早春草本植物碳分配的影响

温带和北方森林生态系统包含了陆地上储存的大部分碳,这些碳以生物量和土壤有机质的形式存在。大气二氧化碳的增加、温度的升高、氮沉降的增加和管理的加强将改变森林生态中的这种碳储量 [36]。

植物的形态特征可能会随着氮有效性增加而改变。氮有效性增加在地上部分通过影响叶面积参数(叶面积和比叶面积)影响植物碳的分布 [37]。在地下部分,根系形态特征的变化被认为是适应土壤资源捕获(水和矿质养分)的结果 [38]。这些性状对根系生产和周转有重要影响 [39] [40] [41],反映了根系光合C的比值,最终影响到整个植物C的分配平衡。

在光合作用强烈的早春落叶阔叶林中,早春草本植物可以接收到大概60%的光照 [42]。但随着氮有效性的不断增加,形成氮饱和,造成土壤酸化 [35]。研究表明,当土壤硝酸盐浓度增加时,植物叶片叶绿素和碳交换量显著下降(P < 0.05),使光合作用受到抑制 [43]。

在模拟氮沉降试验过程中,国内研究发现,植物的地下碳库显著减少 [44]。中国森林生态系统的地上与地下生物量对氮沉降的响应与全球模式不同,其原因可能是由于中国氮沉降量非常高,因此氮沉降对根系的负面效应可能更为强烈 [15]。早春草本植物作为整个森林的“发动机”,其贮存的营养物质大部分集中于地上部分。地下部分由于这些负面效应削减,尽管随着微生物作用和凋落物分解,部分养分会重新汇聚到地下,但是整体趋势可能会一直减少,这将会导致整个森林在复苏过程中整体的养分循环出现偏差,进而影响生态平衡和整个森林的生产力 [45]。

3.2. 氮添加对早春草本植物氮分配的影响

氮和磷通常是限制森林生态系统初级生产力的两个基本元素 [46] [47],然而大气氮沉降导致的高氮磷比可能会降低氮限制 [48],但会加剧植物生长的磷限制 [49]。此外,土壤养分的变化可能会改变叶片、根系、凋落物和微生物中的N和P浓度 [50] [51] [52],进一步影响其N:P化学计量比。此外,就其功能联系(即微生物分解的凋落物营养素),不同生态系统之间的元素浓度及其化学计量比之间存在密切关系 [53] [54] [55]。然而,到目前为止,很少有养分实验来比较不同生态系统成分对养分添加的化学计量反应,并探讨它们之间的化学计量关系。研究早春草本植物的养分化学计量关系,可以为探究早春草本植物生长过程提供依据,对研究森林生态系统平衡具有重大意义。

氮沉降提高了森林生态系统中氮的可用性,并直接影响森林植物对碳和氮的吸收和利用 [56]。有研究表明,外源施氮显著增加了林木氮素的蓄积量,表现在氮同化效率的提高、光合作用关键酶的积累、代谢蛋白的相对含量的提高以及光合碳同化能力 [57]。与此相反,其他研究表明,氮的添加降低了森林植物的碳氮同化速率,导致植物生产力和多样性下降 [58]。这些相互矛盾的结果说明,氮沉降对森林植物生理、生长和发育的影响仍存在许多待研究的问题。对早春草本植物的研究同样可能也会出现这些矛盾的结论,因此,加强此方面的研究,可以为整体的森林生产提供重要依据。

3.3. 氮添加对早春草本植物磷分配的影响

与大量的氮沉降不同,来自灰尘和飞灰的大气磷沉积量很小 [59]。氮磷沉积的不平衡,可能导致陆地生态系统的生长发展从氮限制转变为磷限制 [60]。此外,氮限制生态系统中氮沉降的增加可能通过刺激净初级生产力和改变叶片氮磷化学计量比进而增加植物对磷的需求,通过酸化土壤降低土壤磷有效性,这可能进一步加剧磷限制 [61]。考虑到植物生长需要相对恒定比例的氮和磷,早春草本植物能否在氮沉降增加的情况下维持充足的磷供应,可能对早春草本植物生长和生理变化产生重大影响 [62]。因此,了解早春草本植物物种是否能够适应氮富集引起的磷限制以及如何适应这一限制是至关重要的 [63]。然而,磷吸收模式对氮输入增加的反应更不确定,且某些特定物种具有特定的反应 [64]。

已有的研究认为,在模拟N沉降条件下,为了缓解N添加导致的N、P不平衡,植物的生长策略会发生变化,与此同时,植物的叶、茎、枝和根的P含量也会发生变化 [65]。森林植物叶片P含量对N添加的响应没有一致的研究结果,主要原因是在该过程中还受植物物种、生活方式、生长阶段以及施氮时间长短等因素的影响,研究结果表现为增加 [66]、没有极为显著变化或减少 [67]。随着外源N的增加,植物根系将吸收的大量N传输到叶片中,提高了植物的光合速率,加速了碳水化合物的贮存。而植物体内N、P的平衡,主要是土壤中磷酸酶的活性在氮沉降情况下得到了提高,在这个基础上,土壤中P含量变多,促进了植物对P的吸收。

植物的养分吸收,即从衰老叶片中提取营养物质到其他器官的过程,是多年生植物所采用的主要营养保存机制之一 [68]。相关meta分析表明,在叶片脱落之前,65%的叶片磷被再吸收,这可以占到植物年需求量的40% [69]。因此,磷吸收可以降低植物对外界养分吸收的依赖性,有望成为植物适应磷限制的重要策略。这一预期得到了以下证据的支持:叶片磷吸收效率随着叶磷浓度和土壤磷有效性的降低而增加。然而,植物是否能通过提高磷的吸收效率来适应氮富集引起的磷限制,目前仍存在争议。一些研究 [70] 揭示了增氮条件下叶片磷吸收效率的提高,但在其他研究中没有发现。因此,在增加氮沉降的情况下,研究叶片磷吸收在维持磷供应中的作用还有待进一步研究。

4. 展望

通过以上综述,我们可以了解,氮沉降会对早春草本植物生态系统功能造成(产生)影响,使其生长策略和养分循环出现变化。虽然早春草本植物在整个森林生态系统过程中所提供的养分只占1%~2%,但是其对整个森林的养分循环所作出的贡献大概占据20% [17]。因此,当早春草本植物出现循环失衡的情况时,整个森林生长初期就有可能出现养分缺失和生态系统紊乱的情况,严重影响整个森林的生产力。而在已有的研究中,关注点很少放到早春草本植物领域,因此还有许多需要进一步完善的地方。

4.1. 加强对早春草本植物地下部分的研究

由于早春草本植物相对于灌木和乔木等体型较小,对于根系的研究也出现很多不便,有的早春草本植物根系较粗,有的早春草本植物是既有粗跟也有细跟,在一系列的研究中,很少能做一个统一的比较。在今后的研究中,可以尽可能多地选取相同大类的早春草本植物,对于不同类别的植物,分别进行根系的研究,探讨其中的养分循环变化。

4.2. 加强对早春草本植物地上部分的研究

鲜有对早春草本植物的各个生长发育期的生物量进行测定,并且测定不同时期各个器官之间的生物量相关的养分化学计量。因此,在氮沉降背景下,今后就早春草本植物各个器官的化学计量比进行探讨,可以将根、茎、叶的化学元素含量与其形态性状结合共同考虑,从而对早春草本植物的生存策略有更为全面的了解。

4.3. 加强对早春草本植物地上与地下部分的耦合研究

氮沉降背景下,在对早春草本植物地下部分(根系性状)进行研究的同时研究地上部分(叶片性状)及彼此的联系,或许对早春草本植物整体生存策略的全面了解有所帮助,也有助于进一步了解早春草本植物的根经济谱、植物经济谱及其所揭示的权衡策略。

NOTES

*通讯作者。

参考文献

[1] Thomas, R.Q., Canham, C.D., Weathers, K.C. and Goodale, G.L. (2010) Increased Tree Carbon Storage in Response to Nitrogen Deposition in the US. Nature Geoscience, 3, 13-17.
https://doi.org/10.1038/ngeo721
[2] 梁亚宇, 李丽君, 刘平, 等. 大气氮沉降监测方法及中国不同地理分区氮沉降研究进展[J]. 山西农业科学, 2018, 46(10): 1751-1755.
[3] 吴玉凤, 高霄鹏, 桂东伟, 等. 大气氮沉降监测方法研究进展[J]. 应用生态学报, 2019, 30(10): 3605-3614.
[4] 杨正先, 于丽敏, 张志锋, 等. 渤海大气氮沉降通量初步研究[C]//2012年环境污染与大众健康学术会议. 美国科研出版社, 2012.
[5] Payne, R.J., Camobell, C., Britton, A.J., et al. (2019) What Is the Most Eco-logically-Meaningful Metric of Nitrogen Deposition? Environmental Pollution, 247, 319-331.
https://doi.org/10.1016/j.envpol.2019.01.059
[6] Pan, Y.P., Wang, Y.S., Tang, G.Q. and Wu, D. (2012) Wet and Dry Deposition of Atmospheric Nitrogen at Ten Sites in Northern China. Atmospheric Chemistry and Physics, 12, 6515-6535.
https://doi.org/10.5194/acpd-12-753-2012
[7] Peñuelas, J., Canadell, J.G. and Ogaya, R. (2011) In-creased Water-Use Efficiency during the 20th Century Did Not Translate into Enhanced Tree Growth. Global Ecology and Biogeography, 20, 597-608.
https://doi.org/10.1111/j.1466-8238.2010.00608.x
[8] Vanguelova, E.I. and Pitman, R.M. (2019) Nutrient and Carbon Cycling Along Nitrogen Deposition Gradients in Broadleaf and Conifer Forest Stands in the East of England. Forest Ecology and Management, 447, 180-194.
https://doi.org/10.1016/j.foreco.2019.05.040
[9] Fenn, M.E., Baron, J.S., Allen, E.B., et al. (2003) Ecological Effects of Nitrogen Deposition in the Western United States. BioScience, 53, 404-420.
https://doi.org/10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2
[10] Penuelas, J., Sardans, J., Rivas-ubach, A., et al. (2012) The Human-Induced Imbalance between C, N and P in Earth’s Life System. Global Change Biology, 18, 3-6.
https://doi.org/10.1111/j.1365-2486.2011.02568.x
[11] Janssans, I.A., Dieleman, W., Luyssaert, S., et al. (2010) Reduction of Forest Soil Respiration in Response to Nitrogen Deposition. Nature Geoscience, 3, 315-322.
https://doi.org/10.1038/ngeo844
[12] Gu, B., Ju, X., Chang, J., et al. (2015) Integrated Reactive Nitrogen Budgets and Future Trends in China. Proceedings of the National Academy of Sciences of the United States of America, 112, 8792-8797.
https://doi.org/10.1073/pnas.1510211112
[13] Zhao, Q., Guo, J., Shu, M., et al. (2020) Impacts of Drought and Nitrogen Enrichment on Leaf Nutrient Resorption and Root Nutrient Allocation in Four Tibetan Plant Species. Science of the Total Environment, 723, Article ID: 138106.
https://doi.org/10.1016/j.scitotenv.2020.138106
[14] Jatleeahm, D.P., et al. (1998) Leaf Area and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and Water Additions. Forest Science, 44, 317-328.
[15] 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(05): 500-522.
[16] Tateno, R., Hishi, T. and Takeda, H. (2004) Above- and Belowground Biomass and Net Primary Production in a Cool-Temperate Deciduous Forest in Relation to Topographical Changes in Soil Nitrogen. Forest Ecology & Management, 193, 297-306.
https://doi.org/10.1016/j.foreco.2003.11.011
[17] 曲鹏. 增氮减水对早春草本植物碳、氮分配的影响[D]: [硕士学位论文]. 黑龙江: 黑龙江大学, 2018.
[18] Rothstein, D.E. and Zak, D.R. (2010) Photosynthetic Adaptation and Acclimation to Exploit Seasonal Periods of Direct Irradiance in Three Temperate, Deciduous-Forest Herbs. Functional Ecology, 15, 722-731.
https://doi.org/10.1046/j.0269-8463.2001.00584.x
[19] Driscoll, C.., Whitall, D., Aber, J., et al. (2003) Nitrogen Pollution in the Northeastern United States: Sources, Effects, and Management Options. BioScience, 53, 357-374.
https://doi.org/10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2
[20] Gastal, F. and Lemaire, G. (2002) N Uptake and Distribution in Crops: An Agronomical and Ecophysiological Perspective. Journal of Experimental Botany, 53, 789-799.
https://doi.org/10.1093/jexbot/53.370.789
[21] Zhou, W., Cheng, X., Wu, R., et al. (2018) Effect of Intraspecific Competition on Biomass Partitioning of Larix principis-rupprechtii. Journal of Plant Interactions, 13, 1-8.
https://doi.org/10.1080/17429145.2017.1406999
[22] Litton, C.M., Raich, J.W. and Ryan, M.G. (2007) Carbon Allocation in Forest Ecosystems. Global Change Biology, 13, 2089-2109.
https://doi.org/10.1111/j.1365-2486.2007.01420.x
[23] Meziane, B.S. (2010) The Balanced-Growth Hypothesis and the Allometry of Leaf and Root Biomass Allocation. Functional Ecology, 16, 326-331.
https://doi.org/10.1046/j.1365-2435.2002.00626.x
[24] Gower, S.T., Vogt, K.A. and Grier, C.C. (1992) Carbon Dynamics of Rocky Mountain Douglas-Fir: Influence of Water and Nutrient Availability. Ecological Monographs, 62, 43-65.
https://doi.org/10.2307/2937170
[25] Dewar, R.C. (1993) A Root-Shoot Partitioning Model Based on Carbon-Nitrogen-Water Interactions and Munch Phloem Flow. Functional Ecology, 7, 356-368.
https://doi.org/10.2307/2390216
[26] McQuattie, C.J. and Schier, G.A. (1992) Effect of Ozone and Aluminum on Pitch Pine (Pinus rigida) Seedlings: Anatomy of Mycorrhizae. Canadian Journal of Forest Research, 22, 1901-1916.
https://doi.org/10.1139/x92-249
[27] Vogt, P.H. (1995) Genetic Aspects of Artificial Fertilization. Human Re-production (Oxford, England), 10, 128-137.
https://doi.org/10.1093/humrep/10.suppl_1.128
[28] Guo, D.L., Mitchell, R.J. and Hendricks, J.J. (2004) Fine Root Branch Orders Respond Differentially to Carbon Source-Sink Manipulations in a Longleaf Pine Forest. Oecologia, 140, 450-457.
https://doi.org/10.1007/s00442-004-1596-1
[29] Vitousek, P.M., Porder, S., Houlton, B.Z., et al. (2010) Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen-Phosphorus Interactions. Ecological Applications, 20, 5-15.
https://doi.org/10.1890/08-0127.1
[30] Helja-Sisko, H., Ivika, O., Krista, L., et al. (2009) Ectomycorrhizal Root Tips in Relation to Site and Stand Characteristics in Norway Spruce and Scots Pine Stands in Boreal Forests. Tree Physiology, 29, 445-456.
https://doi.org/10.1093/treephys/tpn042
[31] Hans, L., Raven, J.A., Shaver, G.R. and Smith, S.E. (2008) Plant Nutrient-Acquisition Strategies Change with Soil Age. Trends in Ecology & Evolution, 23, 95-103.
[32] Wen, Z., Li, H., Shen, Q., et al. (2019) Tradeoffs among Root Morphology, Exudation and Mycorrhizal Symbioses for Phospho-rus-Acquisition Strategies of 16 Crop Species. New Phytologist, 223, 882-895.
https://doi.org/10.1111/nph.15833
[33] Ushio, M., Fujiki, Y., Hidaka, A., et al. (2015) Linkage of Root Physiol-ogy and Morphology as an Adaptation to Soil Phosphorus Impoverishment in Tropical Montane Forests. Functional Ecology, 29, 1235-1245.
https://doi.org/10.1111/1365-2435.12424
[34] Deng, M.F., Liu, L.L., Sun, Z.Z., et al. (2016) Increased Phosphate Uptake but Not Resorption Alleviates Phosphorus Deficiency Induced by Nitrogen Deposition in Temperate Larix principis-rupprechtii Plantations. New Phytologist, 212, 1019-1029.
https://doi.org/10.1111/nph.14083
[35] Majdi, H. and Persson, H. (1993) Spatial Distribution of Fine Roots, Rhizosphere and Bulk-Soil Chemistry in an Acidified Picea abies Stand. Scandinavian Journal of Forest Research, 8, 147-155.
https://doi.org/10.1080/02827589309382764
[36] Yang, Y., Guo, J., Wang, G., et al. (2012) Effects of Drought and Nitrogen Addition on Photosynthetic Characteristics and Resource Allocation of Abies fabri Seedlings in Eastern Tibetan Plateau. New Forests, 43, 505-518.
https://doi.org/10.1007/s11056-011-9295-3
[37] Pregitzer, K.S., Burton, A.J., Zak, D.R., et al. (2008) Simulated Chronic Nitrogen Deposition Increases Carbon Storage in Northern Temperate Forests. Global Change Biology, 14, 142-153.
https://doi.org/10.1111/j.1365-2486.2007.01465.x
[38] Wang, J., Hui, D., Ren, H., et al. (2013) Effects of Un-derstory Vegetation and Litter on Plant Nitrogen (N), Phosphorus (P), N:P Ratio and Their Relationships with Growth Rate of Indigenous Seedlings in Subtropical Plantations. PLoS ONE, 8, e84130.
https://doi.org/10.1371/journal.pone.0084130
[39] Burton, A.J., Zogg, G.P., Pregitzer, K.S. and Zak, D.R. (1997) Effect of Measurement CO2 Concentration on Sugar Maple Root Respiration. Tree Physiology, 17, 421-427.
https://doi.org/10.1093/treephys/17.7.421
[40] Kubiske, M.E., Pregitzer, K.S., Mikan, C.J., et al. (1997) Populus tremuloides Photosynthesis and Crown Architecture in Response to Elevated CO2 and Soil N Availability. Oecologia, 110, 328-336.
https://doi.org/10.1007/PL00008813
[41] Pregitzer, K.S., Kubiske, M.E., Yu, C.K., et al. (1997) Relationships among Root Branch Order, Carbon, and Nitrogen in Four Temperate Species. Oecologia, 111, 302-308.
https://doi.org/10.1007/s004420050239
[42] 罗遵兰, 关潇, 吴晓莆, 等. 氮沉降对生态环境的影响研究进展[J]. 贵州农业科学, 2013, 41(10): 81-84.
[43] Riddell, J. and Padgett, P. (2008) The Effect of HNO3 Gas on the Li-chen Ramalina menziesii. Flora, 203, 47-54.
https://doi.org/10.1016/j.flora.2007.10.001
[44] Chen, H., Li, D., Gurmesa, G.A., et al. (2015) Effects of Nitrogen Deposition on Carbon Cycle in Terrestrial Ecosystems of China: A Meta-Analysis. Environmental Pollution, 206, 352-360.
https://doi.org/10.1016/j.envpol.2015.07.033
[45] Wang, G. and Liu, F. (2014) Carbon Allocation of Chinese Pine Seedlings along a Nitrogen Addition Gradient. Forest Ecology and Management, 334, 114-121.
https://doi.org/10.1016/j.foreco.2014.09.004
[46] Treseder, K.K. and Vitousek, P.M. (2001) Effects of Soil Nu-trient Availability on Investment in Acquisition of n and p in Hawaiian Rain Forests. Ecology, 82, 946-954.
https://doi.org/10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
[47] Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen Limitation on Land and in the Sea: How Can It Occur? Biogeochemistry, 13, 87-115.
https://doi.org/10.1007/BF00002772
[48] Zhu, J., Wang, Q., He, N., Smith, M.D., Elser, J. J., Du, J., et al. (2016) Imbalanced Atmospheric Nitrogen and Phosphorus Depositions in China: Implications for Nutrient Limitation. Journal of Geophysical Research Biogeosciences, 121, 1605-1616.
https://doi.org/10.1002/2016JG003393
[49] Liu, Y., Gao, P., Zhang, L., Niu, X. and Wang, B. (2016) Spatial Heterogeneity Distribution of Soil Total Nitrogen and Total Phosphorus in the Yaoxiang Watershed in a Hilly Area of Northern China Based on Geographic Information System and Geostatistics. Ecology & Evolution, 6, 6807-6816.
https://doi.org/10.1002/ece3.2410
[50] Cleveland, C.C. and Liptzin, D. (2007) C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252.
https://doi.org/10.1007/s10533-007-9132-0
[51] Sardans, J., Grau, O., Chen, H.Y.H., Janssens, I.A., Ciais, P., Piao, S., et al. (2017) Changes in Nutrient Concentrations of Leaves and Roots in Response to Global Change Factors. Global Change Biology, 23, 3849-3856.
https://doi.org/10.1111/gcb.13721
[52] Sardans, J., Alonso, R., Janssens, I.A., Carnicer, J., Vereseglou, S., Rillig, M.C., et al. (2017) Foliar and Soil Concentrations and Stoichiometry of Nitrogen and Phosphorous across European Pinus sylvestris Forests: Relationships with Climate, N Deposition and Tree Growth. Functional Ecology, 30, 676-689.
https://doi.org/10.1111/1365-2435.12541
[53] Bell, C., Carrillo, Y., Boot, C.M., et al. (2014) Rhizosphere Stoi-chiometry: Are C:N:P Ratios of Plants, Soils, and Enzymes Conserved at the Plant Species-Level? New Phytologist, 201, 505-517.
https://doi.org/10.1111/nph.12531
[54] Güsewell, S. (2010) N:P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytologist, 164, 243-266.
https://doi.org/10.1111/j.1469-8137.2004.01192.x
[55] Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J. and Wanek, W. (2015) The Application of Ecological Stoichiometry to Plant-Microbial-Soil Organic Matter Transformations. Ecological Monographs, 85, 133-155.
[56] Talhelm, A.F., Pregitzer, K.S. and Burton, A.J. (2011) No Evidence That Chronic Nitrogen Additions Increase Photosynthesis in Mature Sugar Maple Forests. Ecological Applications, 21, 2413-2424.
https://doi.org/10.1890/10-2076.1
[57] Hgberg, M.N., Hgberg, P. and Myrold, D.D. (2007) Is Microbial Community Composition in Boreal Forest Soils Determined by pH, C-to-N Ratio, the Trees, or All Three? Oecologia, 150, 590-601.
https://doi.org/10.1007/s00442-006-0562-5
[58] Liu, N., Wang, J., Guo, Q., Wu, S., Rao, X., Cai, X., et al. (2018) Alterations in Leaf Nitrogen Metabolism Indicated the Structural Changes of Subtropical Forest by Canopy Addition of Nitrogen. Ecotoxicology and Environmental Safety, 160, 134-143.
https://doi.org/10.1016/j.ecoenv.2018.05.037
[59] Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., Marijn, V.D.V., Bopp, L., et al. (2013) Human-Induced Nitrogen-Phosphorus Imbalances alter Natural and Managed Ecosystems across the Globe. Nature Communications, 4, Article No. 2934.
https://doi.org/10.1038/ncomms3934
[60] Goswami, S., Fisk, M.C., Vadeboncoeur, M.A., Garrison-Johnston, M., Yanai, R.D. and Fahey, T.J. (2017) Phosphorus Limitation of Aboveground Production in Northern Hardwood Forests. Ecology, 99, 438-449.
https://doi.org/10.1002/ecy.2100
[61] Menge, D.N.L. and Field, C.B. (2007) Simulated Global Changes alter Phosphorus Demand in Annual Grassland. Global Change Biology, 13, 2582-2591.
https://doi.org/10.1111/j.1365-2486.2007.01456.x
[62] Zhang, K., Zhao, J., Wang, X.-Q., Xu, H.-S., Zang, H.-D., Liu, J.-N., et al. (2019) Estimates on Nitrogen Uptake in the Subsequent Wheat by Aboveground and Root Residue and Rhizodeposition of Using Peanut Labeled with 15N Isotope on the North China Plain. Journal of Integrative Agriculture, 18, 571-579.
https://doi.org/10.1016/S2095-3119(18)62112-4
[63] Naples, B.K. and Fisk, M.C. (2010) Belowground Insights into Nutrient Limitation in Northern Hardwood Forests. Biogeochemistry, 97, 109-121.
https://doi.org/10.1007/s10533-009-9354-4
[64] Yuan, Z.Y. and Chen, H.Y.H. (2015) Negative Effects of Fertilization on Plant Nutrient Resorption. Ecology, 96, 373-380.
https://doi.org/10.1890/14-0140.1
[65] Ryan, M.H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L.D.B., et al. (2012) Carbon Trading for Phosphorus Gain: The Balance between Rhizosphere Carboxylates and Arbuscular Mycorrhizal Symbiosis in Plant Phosphorus Acquisition. Plant, Cell & Environment, 35, 2170-2180.
https://doi.org/10.1111/j.1365-3040.2012.02547.x
[66] Crowley, K.F., McNeil, B.E., Lovett, G.M., Canham, C.D., Driscoll, C.T., Rustad, L.E., et al. (2012) Do Nutrient Limitation Patterns Shift from Nitrogen toward Phosphorus with Increasing Nitrogen Deposition across the Northeastern United States? Ecosystems, 15, 940-957.
https://doi.org/10.1007/s10021-012-9550-2
[67] 陈微微, 寇亮, 蒋蕾, 等. 亚热带湿地松叶片多元素化学计量与养分回收对氮添加的短期响应[J]. 应用生态学报, 2017, 28(4): 1094-1102.
[68] Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F. and Jackson, R.B. (2012) Global Resorption Efficiencies and Concentrations of Carbon and Nutrients in Leaves of Terrestrial Plants. Ecological Monographs, 82, 205-220.
https://doi.org/10.1890/11-0416.1
[69] Cleveland, C.C., Houlton, B.Z., Smith, W.K., Marklein, A.R. and Running, S.W. (2013) Patterns of New versus Recycled Primary Production in the Terrestrial Biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737.
https://doi.org/10.1073/pnas.1302768110
[70] See, C.R., Yanai, R.D. and Fahey, T.J. (2019) Shifting n and p Concentrations and Stoichiometry during Autumn Litterfall: Implications for Ecosystem Monitoring. Ecological Indicators, 103, 488-492.
https://doi.org/10.1016/j.ecolind.2019.04.017