基于高模量沥青混合料的全厚式沥青路面结构优化设计研究Structural Optimization Design of Full Thickness Asphalt Pavement Based on High Modulus Asphalt Mixture

DOI: 10.12677/MS.2021.112014, PDF, HTML, XML, 下载: 29  浏览: 72

Abstract: Using high modulus asphalt mixture, the structure of full thickness asphalt pavement is optimized. According to different pavement material parameters, the tensile strain at the bottom of asphalt layer and the compressive strain at the top of subgrade of three kinds of full thickness asphalt pavement structures are calculated and analyzed respectively, and the thickness of different full thickness asphalt pavement structure layer is obtained. The results show that in Scheme 1, the al-lowable tensile strain at the bottom of the high-modulus asphalt mixture layer is 72.0 × 10−6, and the allowable compressive strain at the top of the subgrade is 230.5 × 10−6, which can meet the re-quirements of the minimum structural layer thickness of 9 cm. In Scheme 2, the allowable tensile strain at the bottom of the medium-high modulus asphalt mixture layer is 70.5 × 10−6, and the al-lowable compressive strain at the top of the subgrade is 230.5 × 10−6. The minimum thickness re-quired by the structure is 26 cm, which can be divided into 8 cm, 9 cm and 9 cm for the convenience of construction. Compared with the original scheme, the optimized full-thickness asphalt pavement can effectively reduce the thickness of the asphalt layer. Under the same load conditions, the full-thickness asphalt pavement structure is optimized to reduce the cost and reduce the resource waste caused by excessive redundancy design.

1. 引言

2. 路面结构设计方案

Figure 1. Design of full depth asphalt pavement

3. 分析方法与参数

Table 2. Pavement materials parameters

4. 计算与分析

Figure 2. Relationship of tensile strain at the bottom of asphalt layer between EME depth in scheme 1

Table 3. Comparison of allowable value and calculated value of pavement structure

Figure 3. Relationship of tensile strain at the bottom of asphalt layer between EME depth in scheme 2

Table 4. Comparison of allowable value and calculated value of pavement structure

Figure 4. Final design of full depth asphalt pavement

5. 结论

1) 方案1中沥青层底层EME-20的允许拉应变为72.0 × 10−6，路基顶面允许的压应变为230.5 × 10−6。沥青层最底层EME-20层可以满足结构所需的最小结构层厚度为9 cm。

2) 方案2中EME-20层底的允许拉应变为70.5 × 10−6，路基顶面允许的压应变为230.5 × 10−6。EME-20层可以满足结构所需的最小厚度为26 cm。全厚式沥青路面方案2中位于沥青上面层以下的EME-20层总体最小厚度可以采用26 cm，为了便于施工可以将其分成8 cm、9 cm和9 cm。

3) 新的全厚式沥青路面设计方案相比原方案有效降低了沥青层厚度，在满足相同荷载作用条件下，对全厚式沥青路面结构进行了降低成本优化，减小了路面结构因过度冗余设计所导致的资源浪费。

 [1] 王林, 韦金城, 张晓萌, 等. “四个一体化”破解长寿命沥青路面技术瓶颈[J]. 科学通报, 2020, 65(30): 3238-3245. [2] 李伊, 刘黎萍, 孙立军. 全厚式沥青路面温度场预估模型[J]. 同济大学学报(自然科学版), 2020, 48(3): 377-382. [3] 王林, 王晓燕. 山东在长寿命路面技术方面的探索[J]. 中国公路, 2020(14): 33-35. [4] 王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37. [5] 李涛, 刘宁, 张涛. 全厚式高模量沥青混凝土路面结构设计及力学分析[J]. 公路, 2013(4): 90-94. [6] 沈孔健. 全厚式长寿命沥青路面轴载换算方法研究[J]. 石油沥青, 2012, 26(1): 29-31.