临床医学进展  >> Vol. 11 No. 2 (February 2021)

单羧酸转运蛋白MCT1和MCT4在肾透明细胞癌中的表达水平作为靶向治疗预后指标的研究
The Study of the Expression of MCT1 and MCT4 as a Prognostic Indicator of Targeted Therapy in Renal Clear Cell Carcinoma

DOI: 10.12677/ACM.2021.112111, PDF, HTML, XML, 下载: 31  浏览: 80 

作者: 马光杰:青岛大学,山东 青岛;曹延炜, 王清海, 王洪阳, 宿梅杰, 董 震*:青岛大学附属医院,山东 青岛

关键词: 单羧酸转运蛋白透明细胞肾癌总生存时间无进展期靶向治疗Monocarboxylate Transporter Clear Cell Renal Cell Carcinoma Overall Survival Progression Free Survival Targeting Therapy

摘要: 目的:靶向治疗晚期肾透明细胞癌远未达到临床预想的效果。如何能寻找一种能够预测其治疗效果的生物标志物成为迫切需要解决的问题。本课题主要研究单羧酸转运蛋白MCT1和MCT4的表达水平与晚期肾癌靶向治疗疗效之间的关系,以期望找到准确的靶向治疗肾癌的预后因子。方法:采用组织芯片法检测2009~2017年75例接受索拉非尼或舒尼替尼治疗的肾透明细胞癌(clear cell renal cell carcinoma, ccRCC)组织中MCT1、MCT4的表达,探讨其与临床及病理指标以及预后之间的关系。结果:MCT1、MCT4的表达与年龄、肿瘤直径、肿瘤分期、Furmann分级、MSKCC无显著性差异(P > 0.05)。生存分析结果显示MCT1高表达与总生存期OS (P = 0.023, HR = 0.14, 95%CI = 0.03~0.50)以及肿瘤无进展期PFS (P = 0.026, HR = 0.19, HR = 0.19, 95%CI = 0.07~0.54)显著相关。MCT4高表达与OS (P = 0.015, HR = 0.16, 95%CI = 0.04~0.56)和PFS (P = 0.03, HR = 0.29 95%CI = 0.12~0.73)显著有关。COX回归分析显示MCT4为独立预后因素,MCT4高表达与OS (P = 0.03, HR = 0.09, 95%CI = 0.12~0.82)和PFS (P = 0.047, HR = 0.35, 95%CI = 0.12~0.99)显著有关。MCT1表达水平与PFS相关(P = 0.014, HR = 0.26, 95%CI = 0.09~0.76)而与OS无显著相关(P = 0.79)。结论:MCT1和MCT4的表达水平与OS和PFS明显相关。肿瘤MCT1、MCT4表达水平是预测ccRCC或靶向治疗疗效预后的独立因素,因此MCT1和MCT4表达水平可能成为预测靶向治疗效果的新生物标记物。
Abstract: Purpose: Targeted therapy for advanced renal clear cell carcinoma is far from achieving the expected clinical effect. How to find a biomarker that can predict its therapeutic effect has become an urgent problem to be solved. This project is to study the relationship between the expression levels of MCT1 and MCT4 and the efficacy of targeted therapy in advanced renal cell carcinoma, in order to find the accurate prognostic factors of targeted therapy for renal cell carcinoma. Methods: Tissue microarray was used to detect the expression of MCT1 and MCT4 in 75 cases of clear cell renal cell carcinoma (ccRCC) treated with sorafenib or sunitinib from 2009 to 2017. Results: The expression of MCT1 and MCT4 had no significant difference with age, tumor diameter, tumor stage, Furmann grade and MSKCC (P > 0.05). Survival analysis showed that high expression of MCT1 was significantly associated with OS (P = 0.023, HR = 0.14, 95%CI = 0.03~0.50) and PFS (P = 0.026, HR = 0.19, HR = 0.19, 95%CI = 0.07~0.54). High expression of MCT4 was significantly associated with OS (P = 0.015, HR = 0.16, 95%CI = 0.04~0.56) and PFS (P = 0.03, HR = 0.29, 95%CI = 0.12~0.73). Cox regression analysis showed that MCT4 was an independent prognostic factor. High expression of MCT4 was significantly associated with OS (P = 0.03, HR = 0.09, 95%CI = 0.12~0.82) and PFS (P = 0.047, HR = 0.35, 95%CI = 0.12~0.99). MCT1 expression was correlated with PFS (P = 0.014, HR = 0.26, 95%CI = 0.09~0.76), but not with OS (P = 0.79). Conclusion: The expression levels of MCT1 and MCT4 were significantly correlated with OS and PFS. The expression levels of MCT1 and MCT4 are independent factors for predicting the prognosis of ccRCC or targeted therapy. Therefore, the expression levels of MCT1 and MCT4 may become new biomarkers for predicting the effect of targeted therapy.

文章引用: 马光杰, 曹延炜, 王清海, 王洪阳, 宿梅杰, 董震. 单羧酸转运蛋白MCT1和MCT4在肾透明细胞癌中的表达水平作为靶向治疗预后指标的研究[J]. 临床医学进展, 2021, 11(2): 780-786. https://doi.org/10.12677/ACM.2021.112111

1. 引言

肾透明细胞癌是一种高度血管化的肿瘤。近十年抗血管生成药物如舒尼替尼、索拉非尼等在晚期肾透明细胞癌治疗中取得了一定的临床效果 [1]。然而,就无进展生存期(PFS)和总生存率(OS)来评估治疗效果时,大多数治疗药物提供的姑息效益低于我们的预期,PFS和OS的反应率分别为70.6%和46.3% [2]。自从“Warburg”和“Reverse Warburg效应”被提出 [1] [2] [3] 以来,肿瘤的糖酵解供能方式越来越被重视。单羧酸转运蛋白(MCTs)主要负责乳酸的转运,在调节糖酵解和维持细胞微环境中的酸碱平衡起重要作用 [4]。因此,我们推测MCTs可通过促进糖酵解,从而削弱抗血管生成药物的作用。本研究旨在探讨单羧酸转运蛋白(MCT1,MCT4)的表达水平是否可以作为靶向治疗肾透明细胞癌的预后指标。

2. 材料与方法

2.1. 一般材料

回顾性研究2010年6月至2015年6月无法手术切除的肾透明细胞癌(ccRCC)患者75例。所有患者均采用口服索拉非尼或舒尼替尼作为一线治疗方案,持续至病情进展或出现不能耐受的不良反应。排除标准:接受肿瘤手术治疗病人;年龄大于70岁,合并有其他类型肿瘤;由于经济或个人主观原因自动放弃治疗;不规律服用药物;转移器官 ≥ 两处。临床参数包括年龄、性别、肿瘤大小(直径)、肿瘤分期、Furmann分级I/II/III)、MSKCC评分、PFS、OS (表1)。伦理符合“赫尔辛基宣言”和“青岛附属医院伦理委员会宣言”准则。

Table 1. Clinical data and expression levels of MCT1 and MCT4 in patient receiving targeted therapy (n = 75)

表1. 接受靶向治疗患者的临床资料及MCT1、MCT4的表达水平(n = 75)

2.2. 组织芯片构建和免疫组织化学分析

肾癌标本在4%多聚甲醛溶液中固定过夜,然后石蜡包埋。采用Envision二步法,按照试剂盒说明书进行操作。抗MCT1、抗MCT4工作液浓度分别为1:100、1:200。

2.3. 统计学分析

显微镜下观察染色结果,进行统计学分析。三位病理科医生分别对同一视野进行了观察。MCT1、4的表达以半定量的方式解释。染色分级为0 (<5%染色细胞)、1 (<25%染色细胞)、2 (25%~50%染色细胞)和3 (>50%染色细胞)。MCT1和MCT4染色阳性细胞数<25%或≥25%者,染色评分为低或高 [5]。所有统计分析均使用SPSSWindowsVersion19.0 (IBM公司,纽约州阿蒙克)进行。定量数据用单因素方差分析、T检验进行分析。用Spearman检验、Mann-Whitney检验和Kruskal Wallis检验对分布中具有非正态分布的范畴变量和秩变量进行了比较。用Kaplan-Meier方法估计PFS和OS,Logrank进行统计学分析。COX回归模型用于评估各变量的预后意义。危险比(HRs)用95%置信区间表示。P值小于0.05的双尾试验被认为是有意义的。

3. 结果

3.1. 免疫组化结果

本组患者中男性41例(54.7%),女性34例(45.3%),年龄(55.49 ± 11.53)岁,随访时间(33.01 ± 14.01)个月。采用组织芯片免疫组织化学方法检测MCT1、MCT4在肿瘤组织中的表达。MCT1在肿瘤细胞胞浆中表达。MCT4呈膜性染色(图1图2)。表1是接受靶向治疗患者的临床资料及MCT1、MCT4表达水平(n = 75)的结果。结果显示:在全部ccRCC患者(n = 150)和TT患者(n = 28)中,与MCT1或MCT4低表达或高表达相比,年龄、肿瘤直径、肿瘤分期、Furmann病理分级和MSKCC均无显著性差异(P > 0.05)。MCT1和MCT4在ccRCC细胞中的表达趋势一致(R = 0.55, P < 0.01)。

Figure 1. Results of MCT1 semi quantitative immunohistochemistry. The staining score was 0, 1, 2, 3

图1. MCT1免疫组化半定量检测结果。染色评分为0,1,2,3

Figure 2. Results of MCT4 semi quantitative immunohistochemistry. The staining score was 0, 1, 2, 3

图2. MCT4免疫组化半定量检测结果。染色评分为0,1,2,3

3.2. ccRCC患者的生存分析

全部ccRCC患者的生存分析(n = 75):对免疫组织芯片结果进行评估后,进行Kaplan-Meier分析(图3)。

Figure 3. (A) The expression of MCT1 was significantly correlated with PFS (P = 0.026, HR = 0.19, 95%CI = 0.07~0.54); (B) The expression of MCT1 was significantly correlated with OS (P = 0.023, HR = 0.14, 95%CI = 0.03~0.50); (C) The expression of MCT4 was significantly correlated with PFS (P = 0.03, HR = 0.29, 95%CI = 0.12~0.74); (D) The expression of MCT4 was significantly correlated with OS (P = 0.015, HR = 0.16, 95%CI = 0.05~0.56)

图3. (A) MCT1表达水平与PFS (P = 0.026, HR = 0.19, 95%CI = 0.07~0.54)显著相关;(B) MCT1表达水平与OS (P = 0.023, HR = 0.14, 95%CI = 0.03~0.50)显著相关;(C) MCT4表达水平与PFS (P = 0.03, HR = 0.29, 95%CI = 0.12~0.74)显著相关;(D) MCT4表达水平与OS (P = 0.015, HR = 0.16, 95%CI = 0.05~0.56)显著相关

MCT1低表达45例(60.0%),高表达30例(40.0%),总生存率MCT1低表达患者为100%,而高表达患者为54.6% (P<0.001)。MCT1表达增加与OS (P = 0.023, HR=0.14, 95%CI = 0.03~0.50)以及肿瘤无进展期PFS (P = 0.026, HR = 0.19, 95%CI = 0.07~0.54)显著相关。MCT1高表达患者的OS中位生存期为48个月,PFS中位期为47个月。COX回归分析显示MCT1表达水平与PFS相关(P = 0.014, HR = 0.26, 95%CI, 0.09~0.76)而与OS无显著相关(P = 0.79)。

MCT4低表达44例(59%),高表达31例(41%),总生存率MCT4低表达患者为96.4%,而高表达患者为66.7% (P = 0.005)。MCT4表达水平与OS (P = 0.015, HR = 0.16, 95%CI = 0.05~0.56)以及PFS (P = 0.03, HR = 0.29, 95%CI = 0.12~0.74)显著相关。MCT4高表达的中位OS为53个月,PSF中位期为48个月。COX回归分析显示,MCT4表达水平与OS (P = 0.031, HR = 0.10, 95%CI =0.13~0.81)和PFS (P = 0.047, HR = 0.35, 95%CI为0.12~0.99)显著相关。

4. 讨论

肾肿瘤靶向药物如舒尼替尼和索拉非尼可以阻断酪氨酸激酶或与血管内皮生长因子(VEGF)配体结合,从而抑制肿瘤血管生成。在105例转移性透明细胞癌患者的舒尼替尼II期试验中,客观缓解率(ORR)仅为34% [4]。从一项随机的舒尼替尼III期研究中,PFS仅为11个月,OS为26.4个月。PFS和OS的反应率分别为70.6%和46.3% [3] [6]。从一线药物到第三线药物的所有靶向治疗都显示了相似的结果,这意味着只有一部分晚期肾癌患者面临着一系列副作用的风险而中从中获益 [7] [8]。然而,到目前为止,在大多数肾癌临床试验和研究中,患者的选择完全是基于资格标准,包括患者状态、肿瘤概况,副作用耐受等 [9]。根据我们目前的数据,医生们很难为患者提供一些预后信息。

单羧酸转运蛋白(MCT)是单羧酸转运蛋白家族,由SLC16A家族编码的14种跨膜蛋白组成。MCTs的两个成员MCT1和MCT4是重要的单羧酸转运蛋白,负责丙酮酸、L-乳酸和酮体细胞膜间转运。MCT高表达与肿瘤的侵袭性和预后有关 [9] [10],MCT1和MCT4在胃癌、口腔癌、大肠癌、宫颈癌、前列腺癌、乳腺癌和胶质母细胞瘤中均呈高表达,并与肿瘤预后有关 [2] [9] [11] [12]。MCT作为肾癌的生物标记物和预后因子,已引起人们的广泛关注和研究。我们采用组织芯片法对晚期肾癌瘤组织中MCT1和MCT4的表达进行分析,并将其表达水平与靶向药物治疗后的临床效果进行分析,结果发现MCT1表达水平与PFS显著相关,MCT4表达水平与OS和PFS均显著相关。虽然我们在COX回归分析总并未发现MCT1与OS的相关性,但从Kaplan生存分析结果存在明显统计学差异,这可能是影响整体生存的因素复杂,也可能是样本量过小所致。但无论如何,MCT1和MCT4显示对靶向治疗的肾癌患者的预后具有明显的预测作用。显然转移对于靶向治疗的预后至关重要,我们下一步应重点放在对于转移患者MCT表达与靶向药物治疗预后之间的关系研究上。

MCT1和MCT4抑制剂可能具有抗代谢、抗血管生成和抗迁移作用,从而抑制肿瘤生长,并有可能使肿瘤进展到转移状态 [13]。Ar-C155858为高效MCT1/2抑制剂 [14],AZD3965为第二代MCT1/2抑制剂 [15]。7ACC2是主要的化合物,最近被发现能选择性地抑制表达MCT1和MCT4的癌细胞对乳酸的摄取。因此,明确MCT1、MCT4和ccRCC的相关性,可能为ccRCC的靶向治疗开辟一条新的途径。

5. 结论

MCT1和MCT4的表达水平与肾癌靶向治疗的生存率、总生存期和无进展生存期明显相关。肿瘤MCT1、MCT4表达水平是预测ccRCC或靶向治疗疗效预后的独立因素,因此MCT1和MCT4表达水平可能成为预测靶向治疗效果的新生物标记物。

NOTES

*通讯作者。

参考文献

[1] MCT1和MCT4的表达水平与肾癌靶向治疗的生存率、总生存期和无进展生存期明显相关。肿瘤MCT1、MCT4表达水平是预测ccRCC或靶向治疗疗效预后的独立因素,因此MCT1和MCT4表达水平可能成为预测靶向治疗效果的新生物标记物。
[2] 参考文献
[3] Zhi, W.I. and Kim, J.J. (2014) An Update on Current Management of Advanced Renal Cell Cancer, Biomarkers, and Future Directions. Annals of Cancer Research, 1, 1-10.
http://dx.doi.org/10.7243/2049-7962-3-8
[4] Georgescu, I., Gooding, R.J., Doiron, R.C., Day, A., Selvarajah, S., Davidson, C., et al. (2016) Molecular Characterization of Gleason Patterns 3 and 4 Prostate Cancer Using Reverse Warburg Effect-Associated Genes. Cancer Metab, 4, Article No. 8.
https://doi.org/10.1186/s40170-016-0149-5
[5] Bovenzi, C.D., Hamilton, J., Tassone, P., Johnson, J., Cognetti, D.M., Luginbuhl, A., et al. (2015) Prognostic Indications of Elevated MCT4 and CD147 across Cancer Types: A Meta-Analysis. BioMed Research International, 2015, Article ID: 242437.
https://doi.org/10.1155/2015/242437
[6] Motzer, R.J., Rini, B.I., Bukowski, R.M., Curti, B.D., George, D.J., Hudes, G.R., et al. (2006) Sunitinib in Patients with Metastatic Renal Cell Carcinoma. JAMA, 295, 2516-2524.
https://doi.org/10.1001/jama.295.21.2516
[7] Cao, Y.W., Liu, Y., Dong, Z., Guo, L., Kang, E.H., Wang, Y.H., Zhang, W. and Niu, H.T. (2018) Monocarboxylate Transporters MCT1 and MCT4 Are Independent Prognostic Biomarkers for the Survival of Patients with Clear Cell Renal Cell Carcinoma and Those Receiving Therapy Targeting Angiogenesis. Urologic Oncology: Seminars and Original Investigations, 36, 311.e15-311.e25.
https://doi.org/10.1016/j.urolonc.2018.03.014
[8] Voss, M.H., Hakimi, A.A., Pham, C.G., Rose Brannon, A., Chen, Y.-B., Cunha, L.F., et al. (2014) Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma and Extended Benefit from mTOR Inhibitor Therapy. Clinical Cancer Research, 20, 1955-1964.
https://doi.org/10.1158/1078-0432.CCR-13-2345
[9] Motzer, R.J., Hutson, T.E., Tomczak, P., Dror Michaelson, M., Bukowski, R.M., Oudard, S., Negrier, S., Szczylik, C., et al. (2009) Overall Survival and Updated Results for Sunitinib Compared with Interferon Alfa in Patients with Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology, 27, 3584-3590.
https://doi.org/10.1200/JCO.2008.20.1293
[10] Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, D., Bukowski, R.M., Rixe, O., et al. (2007) Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. New England Journal of Medicine, 356, 115-124.
https://doi.org/10.1056/NEJMoa065044
[11] Pertega-Gomes, N., Vizcaino, J.R., Miranda-Goncalves, V., Pinheiro, C., Silva, J., Pereira, H., et al. (2011) Monocarboxylate Transporter 4 (MCT4) and CD147 Overexpression Is Associated with Poor Prognosis in Prostate Cancer. BMC Cancer, 11, Article No. 312.
https://doi.org/10.1186/1471-2407-11-312
[12] Yu, J.H., Kim, J.M., Kim, J.K., Choi, S.J., Lee, K.S., Lee, J.-W., et al. (2017) Platelet-Derived Growth Factor Receptor Alpha in Hepatocellular Carcinoma Is a Prognostic Marker Independent of Underlying Liver Cirrhosis. Oncotarget, 8, 39534-39546.
https://doi.org/10.18632/oncotarget.17134
[13] Miranda-Goncalves, V., Honavar, M., Pinheiro, C., Martinho, O., Pires, M.M., Pinheiro, C., et al. (2013) Monocarboxylate Transporters (MCTs) in Gliomas: Expression and Exploitation as Therapeutic Targets. Neuro-Oncology, 15, 172-188.
https://doi.org/10.1093/neuonc/nos298
[14] Lee, J.Y., Lee, I., Chang, W.J., Ahn, S.M., Kim, H.S., Yoo, K.H., et al. (2016) MCT4 as a Potential Therapeutic Target for Metastatic Gastric Cancer with Peritoneal Carcinomatosis. Oncotarget, 7, 43492-43503.
https://doi.org/10.18632/oncotarget.9523
[15] Gallagher, S.M., Castorino, J.J., Wang, D. and Philp, N.J. (2007) Monocarboxylate Transporter 4 Regulates Maturation and Trafficking of CD147 to the Plasma Membrane in the Metastatic Breast Cancer Cell Line MDA-MB-231. Cancer Research, 67, 4182-4189.
https://doi.org/10.1158/0008-5472.CAN-06-3184
[16] Ovens, M.J., Manoharan, C., Wilson, M.C., Murray, C.M. and Halestrap, A.P. (2010) The Inhibition of Monocarboxylate Transporter 2 (MCT2) by AR-C155858 Is Modulated by the Associated Ancillary Protein. Biochemical Journal, 431, 217-225.
https://doi.org/10.1042/BJ20100890
[17] Noble, R.A., Bell, N., Blair, H., Sikka, A., Thomas, H., Phillips, N., et al. (2017) Inhibition of Monocarboxylate Transporter 1 by AZD3965 as a Novel Therapeutic Approach for the Treatment of Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma. Haematologica, 102, 1247-1257.
https://doi.org/10.3324/haematol.2016.163030