|
[1]
|
Doss, J., Culbertson, K., Hahn, D., Camacho, J. and Barekzi, N. (2017) A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses Basel, 9, E50. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wahida, A., Ritter, K. and Horz, H.P. (2016) The Janus-Face of Bacteriophages across Human Body Habitats. PLOS Pathogens, 12, e1005634. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mirzaei, M.K. and Maurice, C.F. (2017) Menage a Trois in the Human Gut: Interactions between Host, Bacteria and Phages. Nature Reviews Microbiology, 15, 397-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Barr, J.J., et al. (2013) Bacteriophage Adhering to Mucus Provide a Non-Host-Derived Immunity. Proceedings of the National Academy of Sciences of the United States of America, 110, 10771-10776. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Huse, S.M., et al. (2008) Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLOS Genetics, 4, e1000255. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Barr, J.J., Youle, M. and Rohwer, F. (2013) Innate and Acquired Bacteriophage-Mediated Immunity. Bacteriophage, 3, e25857. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Verbeken, G., et al. (2007) European Regulatory Conundrum of Phage Therapy. Future Microbiology, 2, 485-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Shigenobu, M., et al. (2005) Bacteriophage Therapy: A Revitalized Therapy against Bacterial Infectious Diseases. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 11, 211-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Viertel, T.M., Ritter, K. and Horz, H.P. (2014) Viruses versus Bacteria-Novel Approaches to Phage Therapy as a Tool against Multidrug-Resistant Pathogens. Journal of Antimicrobial Chemotherapy, 69, 2326-2336. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
O’Flaherty, S., Ross, R.P. and Coffey, A. (2009) Bacteriophage and Their Lysins for Elimination of Infectious Bacteria. FEMS Microbiology Reviews, 33, 801-819. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wittebole, X., De Roock, S. and Opal, S.M. (2014) A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens. Virulence, 5, 226-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sylwia, P., Magdalena, K., Romuald, G., Lidia, M. and Anna, M. (2014) Bacteriophages as an Alternative Strategy for Fighting Biofilm Development. Polish Journal of Microbiology, 63, 137-145. [Google Scholar] [CrossRef]
|
|
[14]
|
Ul, H.I., Nasir, C.W., Nadeem, A.M., Saadia, A. and Ishtiaq, Q. (2012) Bacteriophages and Their Implications on Future Biotechnology: A Review. Virology Journal, 9, 9.
|
|
[15]
|
Schmelcher, M. and Loessner, M.J. (2014) Application of Bacteriophages for Detection of Foodborne Pathogens. Bacteriophage, 4, e28137. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Clark, J.R. and March, J.B. (2006) Bacteriophages and Biotechnology: Vaccines, Gene Therapy and Antibacterials. Trends in Biotechnology, 24, 212-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shi, Y.B., et al. (2012) Characterization and Determination of Holin Protein of Streptococcus suis Bacteriophage SMP in Heterologous Host. Virology Journal, 9, Article No. 70. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, I.N., Smith, D.L. and Young, R. (2000) Holins: The Protein Clocks of Bacteriophage Infections. Annual Review of Microbiology, 54, 799-825. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Linden, S.B., et al. (2015) Biochemical and Biophysical Characterization of PlyGRCS, a Bacteriophage Endolysin Active against Methicillin-Resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 99, 741-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mapes, A.C., Trautner, B.W., Liao, K.S. and Bacteriophage, R.F.R.J. (2016) Development of Expanded Host Range Phage Active on Biofilms of Multi-Drug Resistant Pseudomonas aeruginosa. Bacteriophage, 6, e1096995. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hendrix, R.W., Smith, M.C.M., Burns, R.N., Ford, M.E. and Hatfull, G.F. (1999) Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World’s a Phage. Proceedings of the National Academy of Sciences of the United States of America, 96, 2192-2197. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chibani-Chennoufi, S., Bruttin, A., Dillmann, M.L. and Brussow, H. (2004) Phage-Host Interaction: An Ecological Perspective. Journal of Bacteriology, 186, 3677-3686. [Google Scholar] [CrossRef]
|
|
[23]
|
Yang, W., et al. (2016) Isolation, Phylogenetic Group, Drug Resistance, Biofilm Formation, and Adherence Genes of Escherichia coli from Poultry in Central China. Poultry Science, 95, 2895-2901. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Verma, V., Harjai, K. and Chhibber, S. (2010) Structural Changes Induced by a Lytic Bacteriophage Make Ciprofloxacin Effective against Older Biofilm of Klebsiella pneumoniae. Biofouling, 26, 729-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bedi, M.S., Verma, V. and Chhibber, S. (2009) Amoxicillin and Specific Bacteriophage Can Be Used Together for Eradication of Biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 25, 1145-1151. [Google Scholar] [CrossRef]
|
|
[26]
|
Liu, M.S., et al. (2002) Reverse Transcriptase-Mediated Tropism Switching in Bordetella bacteriophage. Science, 295, 2091-2094. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yen, L., et al. (2004) Exogenous Control of Mammalian Gene Expression through Modulation of RNA Self-Cleavage. Nature, 431, 471-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shinedling, S., et al. (1987) Wild-Type Bacteriophage T4 Is Restricted by the Lambda Rex Genes. Journal of Virology, 61, 3790-3794. [Google Scholar] [CrossRef]
|
|
[29]
|
Drulis-Kawa, Z., Majkowska-Skrobek, G. and Maciejewska, B. (2015) Bacteriophages and Phage-Derived Proteins—Application Approaches. Current Medicinal Chemistry, 22, 1757-1773. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yu, P., Mathieu, J., Li, M., Dai, Z. and Alvarez, P.J. (2016) Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Applied and Environmental Microbiology, 82, 808-815. [Google Scholar] [CrossRef]
|
|
[31]
|
Zaczek, M., et al. (2016) Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Frontiers in Microbiology, 7, 1681. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Merabishvili, M., et al. (2009) Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials. PLoS ONE, 4, e4944. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cisek, A.A., Dabrowska, I., Gregorczyk, K.P. and Wyzewski, Z. (2017) Phage Therapy in Bacterial Infections Treatment: One Hundred Years after the Discovery of Bacteriophages. Current Microbiology, 74, 277-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sulakvelidze, A., et al. (2001) Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, 45, 649-659. [Google Scholar] [CrossRef]
|
|
[35]
|
Plociennikowska, A., Hromada-Judycka, A., Borzecka, K. and Kwiatkowska, K. (2015) Co-Operation of TLR4 and Raft Proteins in LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 72, 557-581. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lepper, P.M., et al. (2002) Clinical Implications of Antibiotic-Induced Endotoxin Release in Septic Shock. Intensive Care Medicine, 28, 824-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Dufour, N., Delattre, R., Ricard, J.D. and Debarbieux, L. (2017) The Lysis of Pathogenic Escherichia coli by Bacteriophages Releases Less Endotoxin Than by Beta-Lactams. Clinical Infectious Diseases, 64, 1582-1588. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zelasko, S., Gorski, A. and Dabrowska, K. (2017) Delivering Phage Therapy per os: Benefits and Barriers. Expert Review of Anti-Infective Therapy, 15, 167-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Brown, T.L., Petrovski, S., Dyson, Z.A., Seviour, R. and Tucci, J. (2016) The Formulation of Bacteriophage in a Semi Solid Preparation for Control of Propionibacterium acnes Growth. PLoS ONE, 11, e0151184. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Bodier-Montagutelli, E., et al. (2017) Inhaled Phage Therapy: A Promising and Challenging Approach to Treat Bacterial Respiratory Infections. Expert Opinion on Drug Delivery, 14, 959-972. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ooi, M.L., et al. (2019) Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngology—Head and Neck Surgery, 145, 723-729. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Nobrega, F.L., Costa, A.R., Kluskens, L.D. and Azeredo, J. (2015) Revisiting Phage Therapy: New Applications for Old Resources. Trends in Microbiology, 23, 185-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chan, B.K., et al. (2013) Phage Cocktails and the Future of Phage Therapy. Future Microbiology, 8, 769-783. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Keen, E.C., et al. (2017) Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio, 8, e02115-16. [Google Scholar] [CrossRef]
|
|
[45]
|
Fancello, L., Desnues, C., Raoult, D. and Rolain, J.M. (2011) Bacteriophages and Diffusion of Genes Encoding Antimicrobial Resistance in Cystic Fibrosis Sputum Microbiota. Journal of Antimicrobial Chemotherapy, 66, 2448-2454. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Modi, S.R., Lee, H.H., Spina, C.S. and Collins, J.J. (2013) Antibiotic Treatment Expands the Resistance Reservoir and Ecological Network of the Phage Metagenome. Nature, 499, 219-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kim, K.P., et al. (2008) PEGylation of Bacteriophages Increases Blood Circulation Time and Reduces T-Helper Type 1 Immune Response. Microbial Biotechnology, 1, 247-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vitiello, C.L., Merril, C.R. and Adhya, S. (2005) An Amino Acid Substitution in a Capsid Protein Enhances Phage Survival in Mouse Circulatory System More than a 1000-Fold. Virus Research, 114, 101-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Singla, S.i, Harjai, K., Katare, O.P. and Chhibber, S. (2015) Bacteriophage-Loaded Nanostructured Lipid Carrier: Improved Pharmacokinetics Mediates Effective Resolution of Klebsiella pneumoniae-Induced Lobar Pneumonia. The Journal of Infectious Diseases, 212, 325-334.
|
|
[50]
|
Ando, H., Lemire, S., Pires, D.P. and Lu, T.K. (2015) Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 1, 187-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lemon, D.J., et al. (2019) Construction of a Genetically Modified T7Select Phage System to Express the Antimicrobial Peptide 1018. Journal of Microbiology, 57, 532-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Faezeh, M., John, S.A., Keiko, Y., Toshiya, O. and Yasunori, T. (2009) Site-Specific Recombination of T2 Phage Using IP008 Long Tail Fiber Genes Provides a Targeted Method for Expanding Host Range While Retaining Lytic Activity. FEMS Microbiology Letters, 295, 211-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Young, R. and Bläsi, U. (1995) Holins: Form and Function in Bacteriophage Lysis. FEMS Microbiology Reviews, 17, 191-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Rietsch, A. and Bläsi, U. (1993) Non-Specific Hole Formation in the Escherichia coli Inner Membrane by Lambda S Proteins in Independent of Cellular secY and secA Functions and of the Proportion of Membrane Acidic Phospholipids. FEMS Microbiology Letters, 107, 101-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Blasi, U. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822. [Google Scholar] [CrossRef]
|
|
[56]
|
Hagens, S. and Blasi, U. (2003) Genetically Modified Filamentous Phage as Bactericidal Agents: A Pilot Study. Letters in Applied Microbiology, 37, 318-323. [Google Scholar] [CrossRef]
|
|
[57]
|
Steven, H., Andrę, H., Uwe, V.A., Alexander, V.G. and Udo, B.Ą. (2004) Therapy of Experimental Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822. [Google Scholar] [CrossRef]
|
|
[58]
|
Moradpour, Z., et al. (2009) Genetically Engineered Phage Harbouring the Lethal Catabolite Gene Activator Protein Gene with an Inducer-Independent Promoter for Biocontrol of Escherichia coli. FEMS Microbiology Letters, 296, 67-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Westwater, C., et al. (2003) Use of Genetically Engineered Phage to Deliver Antimicrobial Agents to Bacteria: An Alternative Therapy for Treatment of Bacterial Infections. Antimicrobial Agents and Chemotherapy, 47, 1301-1307. [Google Scholar] [CrossRef]
|
|
[60]
|
Iftach, Y., Marina, S., Hagit, B., Doron, S. and Itai, B. (2006) Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages. Antimicrobial Agents and Chemotherapy, 50, 2087-2097. [Google Scholar] [CrossRef]
|
|
[61]
|
Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines. Antimicrobial Agents and Chemotherapy, 51, 2156-2163. [Google Scholar] [CrossRef]
|
|
[62]
|
Vaks, L. and Benhar, I. (2011) In Vivo Characteristics of Targeted Drug-Carrying Filamentous Bacteriophage Nanomedicines. Journal of Nanobiotechnology, 9, Article No. 58. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Fischetti, V.A. (2005) Bacteriophage Lytic Enzymes: Novel Anti-Infectives. Trends in Microbiology, 13, 491-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Gilmer, D.B., Schmitz, J.E., Euler, C.W. and Fischetti, V.A. (2013) Novel Bacteriophage Lysin with Broad Lytic Activity Protects against Mixed Infection by Streptococcus pyogenes and Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57, 2743-2750. [Google Scholar] [CrossRef]
|
|
[65]
|
Feifei, X., et al. (2016) Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus. Applied and Environmental Microbiology, 82, 87-94. [Google Scholar] [CrossRef]
|
|
[66]
|
Yufeng, Z., et al. (2018) Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Applied and Environmental Microbiology, 84, e00886-18. [Google Scholar] [CrossRef]
|
|
[67]
|
Pastagia, M., et al. (2011) A Novel Chimeric Lysin Shows Superiority to Mupirocin for Skin Decolonization of Methicillin-Resistant and -Sensitive Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 55, 738-744. [Google Scholar] [CrossRef]
|
|
[68]
|
Rodr├şguez-Rubio, L., et al. (2018) The Phage Lytic Proteins from the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA88 Display Multiple Active Catalytic Domains and Do Not Trigger Staphylococcal Resistance. PLoS ONE, 8, e64671. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Lei, Z., et al. (2016) LysGH15 Kills Staphylococcus aureus without Being Affected by the Humoral Immune Response or Inducing Inflammation. Scientific Reports, 6, Article No. 29344. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Svetolik, D., et al. (2005) Synergistic Killing of Streptococcus pneumoniae with the Bacteriophage Lytic Enzyme Cpl-1 and Penicillin or Gentamicin Depends on the Level of Penicillin Resistance. Antimicrobial Agents and Chemotherapy, 49, 1225-1228. [Google Scholar] [CrossRef]
|
|
[71]
|
Mohammad, R., et al. (2007) Efficient Elimination of Multidrug-Resistant Staphylococcus aureus by Cloned Lysin Derived from Bacteriophage Phi MR11. The Journal of Infectious Diseases, 196, 1237-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Fischetti, V.A. (2010) Bacteriophage Endolysins: A Novel Anti-Infective to Control Gram-Positive Pathogens. International Journal of Medical Microbiology, 300, 357-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Jingmin, G., et al. (2014) Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented “EF-Hand-Like” Calcium-Binding Phage Lysin. PLoS Pathogens, 10, e1004109. [Google Scholar] [CrossRef] [PubMed]
|