时空分数阶双Sine-Gordon方程的显式精确解
Explicit Exact Solutions of Space-Time Fractional Double Sine-Gordon Equation
DOI: 10.12677/AAM.2021.103075, PDF, HTML, XML, 下载: 377  浏览: 517 
作者: 林鸿夸:广州大学数学与信息科学学院,广东 广州
关键词: 变量分离的ODE方法Conformable分数阶导数精确解The Variable Separated ODE Method Conformable Fractional Derivative Exact Solution
摘要: 本文结合变量分离的ODE方法和一个复变换,通过找到一个合适且易于求解的辅助方程,构造出带有conformable分数阶导数的双Sine-Gordon方程一些新的精确解,丰富了其精确解解系。同时表明该方法高效简洁,可应用于求解其他同类型分数阶偏微分方程。
Abstract: In this paper, combing the variable separated ODE method and a complex transformation, we constructed some new exact solutions of the double Sine-Gordon equation with conformable fractional derivative. Especially, we found a suitable auxiliary equation which can be solved easily and powerful for enriching its exact solution system. It is shown that this method is efficient and simple. Thus, the used method is highly recommended to solve other fractional partial differential equations of the same type.
文章引用:林鸿夸. 时空分数阶双Sine-Gordon方程的显式精确解[J]. 应用数学进展, 2021, 10(3): 689-693. https://doi.org/10.12677/AAM.2021.103075

1. 引言

非线性发展方程在等离子物理、流体力学和声学等自然科学领域存在广泛的应用,寻找非线性发展方程精确解具有显著的物理意义,也能为非线性发展方程数值计算结果的准确性提供一种检验方式。近年来,分数阶微积分理论发展迅速,利用分数阶微积分可以更好地刻画物理模型,其中非线性分数阶偏微分方程在流体力学、电力工程和反常扩散等工程领域发挥重要作用,而关于其精确解理论的研究也得到空前的发展,相继涌现许多求解非线性分数阶偏微分方程的方法 [1] - [6],包括Bäcklund变换、F-展开法、扩展双曲函数展开法、G’/G-展开法等等。

考虑时空分数阶双Sine-Gordon方程

D t t 2 α u + D x x 2 β u = λ sin u + μ sin 2 u , (1.1)

其中 0 < α , β 1 D α 是conformable分数阶导数,其定义将在下一节给出,双Sine-Gordon方程对研究孤子碰撞行为有着重要作用,整数阶双Sine-Gordon方程目前已经存在相当丰富的研究 [7] - [13],而对于分数阶双Sine-Gordon方程研究仍然较少,本文旨在通过一种变量分离的ODE方法求得时空分数阶双Sine-Gordon方程的一些精确解,对该方程精确解的相关理论研究做出一些补充和拓展。

2. 分数阶导数相关定义及性质介绍

分数阶导数目前有多种不同的定义,其中应用最为广泛的主要有Riemann-Lioville导数、Caputo导数和近几年由Khalil等提出的conformable导数 [14],相比之下,conformable导数形式更为简洁具有许多良好的数学性质。因此本文考虑带有conformable分数阶导数的双Sine-Gordon方程。下面给出几类分数阶导数的定义,以及conformable分数阶导数的相关性质。

1) Riemann-Lioville导数

对实值函数 f ,Riemann-Lioville导数定义如下:

D t α f ( t ) = 1 Γ ( n α ) d n d t n a t f ( x ) ( t x ) 1 + n α d x , (2.1)

其中 α ( n 1 , n ] n N + Γ ( ) 为Gamma函数,定义为

Γ ( α ) = 0 + x α 1 e α d x .

2) Caputo导数

对实值函数 f ,Caputo导数定义如下:

D t α f ( t ) = 1 Γ ( n α ) a t f ( n ) ( x ) ( t x ) 1 + n α d x , (2.2)

其中 α ( n 1 , n ] n N + Γ ( ) 为Gamma函数。

3) conformable导数

对实值函数 f : ( 0 , ) R ,conformable导数定义如下:

D t α f ( t ) = lim ε 0 f ( t + ε t 1 α ) f ( t ) ε , (2.3)

其中 α ( 0 , 1 ) ,若 f ( t ) , g ( t ) α 阶可导的,则满足以下性质:

性质1. D t α ( a f ( t ) + b g ( t ) ) = a D t α f ( t ) + b D t α g ( t ) a , b R

性质2. D t α ( t u ) = u t u α u R

性质3. D t α ( f ( t ) g ( t ) ) = g ( t ) D t α f ( t ) + f ( t ) D t α g ( t )

性质4. D t α ( f ( t ) g ( t ) ) = g ( t ) D t α f ( t ) f ( t ) D t α g ( t ) g 2 ( t )

性质5. 若 f ( t ) 可微,则 D t α f ( t ) = t 1 α d f ( t ) d t

3. 变量分离的ODE方法介绍

考虑任一分数阶偏微分方程

P ( u , D t α u , D x β u , D t t 2 α u , D x x 2 β u , ) = 0 , (3.1)

其中 D t α u 是u关于t的α阶conformable导数,通过变换

u ( x , t ) = u ( ξ ) , ξ = k x β β + c t α α , (3.2)

其中 c , k 为任意常数,可以将方程(3.1)转化为一个常微分方程

Q ( u , u ξ , u ξ ξ , ) = 0. (3.3)

假设 u ( ξ ) 满足一个变量分离的辅助常微分方程

d u d ξ = G ( u ) , (3.4)

这里 G ( u ) 是一个根据方程(3.3)形式选取的一个合适的函数,并且使得方程(3.4)易于求解,将方程(3.4)代入方程(3.3),使得各项系数为零,可以得到一个代数方程组。由于方程(3.4)的精确解易于求得,若能求解上述代数方程组,连同所求方程(3.4)的解便可得到方程(3.1)的精确解。

4. 变量分离的ODE方法求解时空分数阶双Sine-Gordon方程

考虑带有conformable导数时空分数阶双Sine-Gordon方程(1.1),利用变换(3.2),可将方程转化为

( c 2 + k 2 ) u ξ ξ = λ sin u + μ sin 2 u , (4.1)

等价于

u ξ ξ = λ c 2 + k 2 sin u + μ c 2 + k 2 sin 2 u . (4.2)

假设 u ( ξ ) 满足一个变量分离的常微分方程

d u d ξ = a + b cos u , a , b R , (4.3)

其中 a , b 为待定常数,两边同时对 ξ 求导可得

u ξ ξ = a b sin u b 2 2 sin 2 u , (4.4)

对比(4.2)式和(4.4)式 sin u sin 2 u 系数,可得

a b = λ c 2 + k 2 , b 2 2 = μ c 2 + k 2 . (4.5)

u < 0 时,解方程组(4.5)有

a = λ 2 μ ( c 2 + k 2 ) , b = 2 μ c 2 + k 2 , (4.6)

而方程(4.3)的解可以表示为

{ u 1 = 2 arctan [ a + b a b tan ( a 2 b 2 2 ( ξ + ξ 0 ) ) ] , a > b , u 2 = 2 arctan [ b + a b a tanh ( b 2 a 2 2 ( ξ + ξ 0 ) ) ] , a < b , u 3 = 2 arctan [ b + a b a coth ( b 2 a 2 2 ( ξ + ξ 0 ) ) ] , a < b , u 4 = 2 arctan [ a ( ξ + ξ 0 ) ] , a = b . (4.7)

联合(4.6)式和(4.7)式可得到方程(1.1)的显示精确解

{ u 11 = 2 arctan [ λ + 2 μ λ 2 μ tan ( λ 2 4 μ 2 8 μ ( c 2 + k 2 ) ( ξ + ξ 0 ) ) ] , λ < | 2 μ | , u 12 = 2 arctan [ 2 μ λ 2 μ + λ tanh ( 4 μ 2 λ 2 8 μ ( c 2 + k 2 ) ( ξ + ξ 0 ) ) ] , λ > | 2 μ | , u 13 = 2 arctan [ 2 μ λ 2 μ + λ coth ( 4 μ 2 λ 2 8 μ ( c 2 + k 2 ) ( ξ + ξ 0 ) ) ] , λ > | 2 μ | , u 14 = 2 arctan [ 2 μ c 2 + k 2 ( ξ + ξ 0 ) ] , λ = | 2 μ | .

5. 结论

结合变量分离的ODE方法和一个复变换,可将非线性分数阶偏微分方程转化为一个常微分方程,再寻求一个合适且解的形式明确的辅助方程,构造出时空分数阶双Sine-Gordon方程丰富的精确解。结果表明该方法简单高效,可用于其他相同类型的分数阶偏微分方程。

参考文献

[1] Beal, R., Rabelo, M. and Tenenblat, K. (1988) Bäcklund Transformations and Inverse Scattering and for Some Pseudo-Spherical Surface Equations. Studies in Applied Mathematics, 81, 125-151.
https://doi.org/10.1002/sapm1989812125
[2] Shang, Y.D., Huang, Y. and Yuan, W.J. (2011) Bäcklund Transformations and Abundant Exact Explicit Solutions of the Sharma-Tasso-Olver Equation. Applied Mathematics and Computation, 217, 7172-7183.
https://doi.org/10.1016/j.amc.2011.01.115
[3] Bayrak, M.A. (2018) Anosov Application of the G’/G-Expansion Method for Some Space-Time Fractional Partial Differential Equations. Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67, 60-67.
https://doi.org/10.1501/Commua1_0000000830
[4] Zhu, S.D. (2010) The Extended G’/G-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations. Mathematical and Computational Applications, 15, 924-929.
https://doi.org/10.3390/mca15050924
[5] Lu, D.C. and Zhang, Z.H. (2017) Exact Solutions for Fractional Nonlinear Evolution Equations by the F-Expansion Method. International Journal of Nonlinear Science, 24, 180-187.
[6] Shang, Y.D. (2008) The Extended Hyperbolic Function Method and Exact Solutions of the Long-Short Waveresonance Equations. Chaos, Solitons & Fractals, 36, 762-771.
https://doi.org/10.1016/j.chaos.2006.07.007
[7] Wazwaz, A.M. (2004) A Sine-Cosine Method for Handling Nonlinear Wave Equation. Mathematical and Computer Modelling, 40, 499-508.
https://doi.org/10.1016/j.mcm.2003.12.010
[8] Wang, M.L. and Li, X.Z. (2006) Exact Solutions to the Double Sine-Gordon Equation. Chaos, Solitons & Fractals, 27, 477-486.
https://doi.org/10.1016/j.chaos.2005.04.027
[9] Zhang, S. and Zhang, H.Q. (2011) Fractional Sub-Equation Method and Its Applications to Nonlinear fractional PDEs. Physics Letters A, 375, 1069-1073.
https://doi.org/10.1016/j.physleta.2011.01.029
[10] Wazwaz, A.M. (2005) Exact Solutions to the Double Sinh-Gordon Equation by the Tanh Method and a Variable Separated ODE Method. Computers & Mathematics with Applications, 50, 499-508.
https://doi.org/10.1016/j.camwa.2005.05.010
[11] Sun, Y.C. (2015) New Exact Traveling Wave Solutions for Double Sine-Gordon Equation. Applied Mathematics and Computation, 258, 100-104.
https://doi.org/10.1016/j.amc.2015.02.002
[12] Dai, C.Q., Cen, X. and Wu, S.S. (2009) Exact Travelling Wave Solutions of the Discrete Sine-Gordon Equation Obtained via the Exp-Function Method. Nonlinear Analysis, 70, 58-63.
https://doi.org/10.1016/j.na.2007.11.034
[13] Hosseini, K., Mayeli, P. and Kumar, D. (2018) New Exact Solutions of the Coupled Sine-Gordon Equations in Nonlinear Optics Using the Modified Kudryashov Method. Journal of Modern Optics, 65, 361-364.
https://doi.org/10.1080/09500340.2017.1380857
[14] Khalil, R., Al Horani, M., Yousef, A., et al. (2014) A New Definition of Fractional Derivative. Journal of Computational and Applied Mathematics, 264, 65-70.
https://doi.org/10.1016/j.cam.2014.01.002