棱切球四面体各侧面内心连线的几何不等式
Geometric Inequalities of the Lines Between the Incenters in Each Side for a Edge-Tangent’s Sphere Tetrahedron
DOI: 10.12677/HANSPrePrints.2021.61007, PDF, 下载: 328  浏览: 387 
作者: 李兴源:广州一智通供应链管理有限公司,广州,中国
关键词: 四面体棱切球几何不等式Tetrahedron Edge-Tangent’s Sphere Geometric Inequalities
摘要: 四面体存在棱切球的充要条件是该四面体的三组对棱之和相等。对于存在棱切球的四面体,本文给出有关其各侧面内心连线与棱切球半径、该四面体体积的几何不等式。
Abstract: The sufficient and necessary condition for the tetrahedron to have a edge-tangent’s sphere is that the sum of the three groups of opposite edges is equal in the tetrahedron. For a tetrahedron with a edge-tangent’s sphere, we give some geometric inequalities about the lines between the incenters in each side, the radius of the edge-tangent’s sphere and the volume of the tetrahedron in this paper.
文章引用:李兴源. 棱切球四面体各侧面内心连线的几何不等式[J]. 汉斯预印本, 2021, 6(1): 1-4. https://doi.org/10.12677/HANSPrePrints.2021.61007

参考文献

[1] 王学斌. E_n空间二面角的另一类不等式[J]. 岳阳师范学院学报, 2000, 13(4): 6-11.
[2] 贺斌. 四面体存在棱切球的一个充要条件[J]. 中学数学月刊, 1998, 3: 46.
[3] 翁玉中. 关于多面体的棱切球的存在性[J]. 中学数学月刊, 1997, 8: 14-16.
[4] 林祖成. n维单形的棱切超球[J]. 数学实践与认识, 1995, 4: 90-93.