应激颗粒抑制剂的研究进展
Progress on the Inhibitors of Stress Granules
DOI: 10.12677/HJBM.2021.112006, PDF, 下载: 606  浏览: 1,324  国家自然科学基金支持
作者: 李 娟, 周钰林, 金志刚*:浙江师范大学化学与生命科学学院,浙江 金华;浙江省野生动物生物技术与保护利用重点实验室,浙江 金华
关键词: 应激颗粒神经退行性疾病肿瘤病毒感染抑制剂Stress Granules Neurodegenerative Disease Cancer Viral Infections Inhibitors
摘要: 在多种逆境条件下,真核生物通常会在细胞质中形成呈聚集状颗粒的mRNA-蛋白质复合体,即应激颗粒(stress granules, SGs)。SGs的形成具有重要生理意义,包括通过调控mRNA翻译以及抑制细胞凋亡相关信号通路等机制,将逆境压力对细胞造成的损伤最小化,并促进细胞对逆境条件的适应以及在逆境条件下的存活。研究表明,SGs与多种疾病的发生关联紧密,包括多种类型的肿瘤、神经退行性疾病以及病毒感染相关疾病等。肿瘤细胞利用SGs促进了逆境条件下的存活,而一些神经退行性疾病中蛋白聚集体的形成也与异常SGs密切相关。因此,SGs逐渐成为以上疾病的新型药物靶点并受到越来越多研究的关注,SGs抑制剂也就应运而生。本文主要就靶向SGs的化合物及其在相关疾病中的应用进行了总结和探讨,以期为SGs抑制剂的研究及其临床应用提供参考。
Abstract: Upon a variety of adverse conditions, eukaryotic cells usually form aggregating droplet-like mRNA-protein complexes namely stress granules (SGs) in the cytoplasm. The physiological signifi-cance of SGs formation is to minimize stress-related damage, promote stress adaptation and cell survival via regulation of mRNA translation and inhibition of apoptosis-related signaling pathways. Accordingly, dysregulation of SGs are closely associated with many diseases, including many types of cancer, neurodegenerative diseases and viral infectious diseases SGs hijacked by cancer cells promote the survival of cancer cells under adverse conditions, while protein aggregates found in some neurodegenerative diseases are also related to abnormal SGs. Therefore, SGs attract the at-tention of growing studies as a new therapeutic target, concomitantly with the emergence of SGs in-hibitors. This review will summarize and discuss recent progress on compounds targeting SGs and their application in SGs-related diseases, which may be helpful for research and therapeutic appli-cation of SGs inhibitors.
文章引用:李娟, 周钰林, 金志刚. 应激颗粒抑制剂的研究进展[J]. 生物医学, 2021, 11(2): 40-48. https://doi.org/10.12677/HJBM.2021.112006

参考文献

[1] Jain, S., Wheeler, J.R., Walters, R.W., et al. (2016) ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell, 164, 487-498.
https://doi.org/10.1016/j.cell.2015.12.038
[2] Molliex, A., Temirov, J., Lee, J., et al. (2015) Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell, 163, 123-133.
https://doi.org/10.1016/j.cell.2015.09.015
[3] Wheeler, J.R., Matheny, T., Jain, S., et al. (2016) Distinct Stages in Stress Granule Assembly and Disassembly. eLife, 5, e18413.
https://doi.org/10.7554/eLife.18413
[4] Kedersha, N., Ivanov, P. and Anderson, P. (2013) Stress Granules and Cell Signaling: More than Just a Passing Phase? Trends in Biochemical Sciences, 38, 494-506.
https://doi.org/10.1016/j.tibs.2013.07.004
[5] Pothof, J., Verkaik, N.S., Hoeijmakers, J.H., et al. (2009) MicroRNA Responses and Stress Granule Formation Modulate the DNA Damage Response. Cell Cycle, 8, 3462-3468.
https://doi.org/10.4161/cc.8.21.9835
[6] Buchan, J.R. (2014) mRNP Granules: Assembly, Function, and Connections with Disease. RNA Biology, 11, 1019-1030.
https://doi.org/10.4161/15476286.2014.972208
[7] Thomas, M.G., Loschi, M., Desbats, M.A. and Boccaccio, G.L. (2011) RNA Granules: The Good, the Bad and the Ugly. Cellular Signalling, 23, 324-234.
https://doi.org/10.1016/j.cellsig.2010.08.011
[8] Aulas, A. and Vande Velde, C. (2015) Alterations in Stress Granule Dynamics Driven by TDP-43 and FUS: A Link to Pathological Inclusions in ALS? Frontiers in Cellular Neuroscience, 9, 423.
https://doi.org/10.3389/fncel.2015.00423
[9] Buchan, J.R., Yoon, J.H. and Parker, R. (2011) Stress-Specific Composition, Assembly and Kinetics of Stress Granules in Saccharomyces cerevisiae. Journal of Cell Science, 124, 228-239.
https://doi.org/10.1242/jcs.078444
[10] Holcik, M. (2015) Could the eIF2α-Independent Translation Be the Achilles Heel of Cancer? Frontiers in Oncology, 5, 264.
https://doi.org/10.3389/fonc.2015.00264
[11] Baltzis, D., Pluquet, O., Papadakis, A.I., et al. (2007) The eIF2alpha Kinases PERK and PKR Activate Glycogen Synthase Kinase 3 to Promote the Proteasomal Degradation of p53. The Journal of Biological Chemistry, 282, 31675-31687.
https://doi.org/10.1074/jbc.M704491200
[12] Pelletier, J., Graff, J., Ruggero, D. and Sonenberg, N. (2015) Targeting the eIF4F Translation Initiation Complex: A Critical Nexus for Cancer Development. Cancer Research, 75, 250-263.
https://doi.org/10.1158/0008-5472.CAN-14-2789
[13] Wippich, F., Bodenmiller, B., Trajkovska, M.G., et al. (2013) Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling. Cell, 152, 791-805.
https://doi.org/10.1016/j.cell.2013.01.033
[14] Thedieck, K., Holzwarth, B., Prentzell, M.T., et al. (2013) Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 154, 859-874.
https://doi.org/10.1016/j.cell.2013.07.031
[15] Tourrière, H., Chebli, K., Zekri, L., et al. (2003) The RasGAP-Associated Endoribonuclease G3BP Assembles Stress Granules. The Journal of Cell Biology, 160, 823-831.
https://doi.org/10.1083/jcb.200212128
[16] Solomon, S., Xu, Y., Wang, B., et al. (2007) Distinct Structural Features of Caprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2alpha, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs. Molecular and Cellular Biology, 27, 2324-2342.
https://doi.org/10.1128/MCB.02300-06
[17] Kedersha, N., Panas, M.D., Achorn, C.A., et al. (2016) G3BP-Caprin1-USP10 Complexes Mediate Stress Granule Condensation and Associate with 40S Subunits. The Journal of Cell Biology, 212, 845-860.
https://doi.org/10.1083/jcb.201508028
[18] Nott, T.J., Petsalaki, E., Farber, P., et al. (2015) Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles. Molecular Cell, 57, 936-947.
https://doi.org/10.1016/j.molcel.2015.01.013
[19] Boeynaems, S., Alberti, S., Fawzi, N.L., et al. (2018) Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 28, 420-435.
https://doi.org/10.1016/j.tcb.2018.02.004
[20] Mahboubi, H. and Stochaj, U. (2017) Cytoplasmic Stress Granules: Dynamic Modulators of Cell Signaling and Disease. Biochimica et Biophysica Acta, 1863, 884-895.
https://doi.org/10.1016/j.bbadis.2016.12.022
[21] Mateju, D., Eichenberger, B., Eglinger, J., Roth, G. and Chao, J.A. (2020) Single-Molecule Imaging Reveals Translation of mRNAs Localized to Stress Granules. Cell, 183, 1801-1812.
https://doi.org/10.1101/2020.03.31.018093
[22] Eisinger-Mathason, T.S., Andrade, J., Groehler, A.L., et al. (2008) Codependent Functions of RSK2 and the Apoptosis-Promoting Factor TIA-1 in Stress Granule Assembly and Cell Survival. Molecular Cell, 31, 722-736.
https://doi.org/10.1016/j.molcel.2008.06.025
[23] Shelkovnikova, T.A., Dimasi, P., Kukharsky, M.S., et al. (2017) Chronically Stressed or Stress-Preconditioned Neurons Fail to Maintain Stress Granule Assembly. Cell Death & Disease, 8, e2788.
https://doi.org/10.1038/cddis.2017.199
[24] Wang, F., Li, J., Fan, S., et al. (2020) Targeting Stress Granules: A Novel Therapeutic Strategy for Human Diseases. Pharmacological Research, 161, 105143.
https://doi.org/10.1016/j.phrs.2020.105143
[25] McCormick, C. and Khaperskyy, D.A. (2017) Translation Inhibition and Stress Granules in the Antiviral Immune Response. Nature Reviews Immunology, 17, 647-660.
https://doi.org/10.1038/nri.2017.63
[26] Anderson, P., Kedersha, N. and Ivanov, P. (2015) Stress Granules, P-Bodies and Cancer. Biochimica et Biophysica Acta, 1849, 861-870.
https://doi.org/10.1016/j.bbagrm.2014.11.009
[27] Merchant, M.L., Perkins, B.A., Boratyn, G.M., et al. (2009) Urinary Peptidome May Predict Renal Function Decline in Type 1 Diabetes and Microalbuminuria. Journal of the American Society of Nephrology, 20, 2065-2074.
https://doi.org/10.1681/ASN.2008121233
[28] Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., et al. (2013) Pharmacological Brake-Release of mRNA Translation Enhances Cognitive Memory. eLife, 2, e00498.
https://doi.org/10.7554/eLife.00498
[29] Sidrauski, C., Mcgeachy, A.M., Ingolia, N.T. and Walter, P. (2015) The Small Molecule ISRIB Reverses the Effects of eIF2α Phosphorylation on Translation and Stress Granule Assembly. eLife, 4.
https://doi.org/10.7554/eLife.05033
[30] Nguyen, H.G., Conn, C.S., Kye, Y., et al. (2018) Development of a Stress Response Therapy Targeting Aggressive Prostate Cancer. Science Translational Medicine, 10, eaar2036.
https://doi.org/10.1126/scitranslmed.aar2036
[31] Mahameed, M., Boukeileh, S., Obiedat, A., et al. (2020) Pharmacological Induction of Selective Endoplasmic Reticulum Retention as a Strategy for Cancer Therapy. Nature Communications, 11, Article No. 1304.
https://doi.org/10.1038/s41467-020-15067-5
[32] Bugallo, R., Marlin, E., Baltanás, A., et al. (2020) Fine Tuning of the Unfolded Protein Response by ISRIB Improves Neuronal Survival in a Model of Amyotrophic Lateral Sclerosis. Cell Death & Disease, 11, Article No. 397.
https://doi.org/10.1038/s41419-020-2601-2
[33] Kim, H.-J., Raphael, A.R., LaDow, E.S., et al. (2014) Therapeutic Modulation of eIF2α Phosphorylation Rescues TDP-43 Toxicity in Amyotrophic Lateral Sclerosis Disease Models. Nature Genetics, 46, 152-160.
https://doi.org/10.1038/ng.2853
[34] Somasekharan, S.P., El-Naggar, A., Leprivier, G., et al. (2015) YB-1 Regulates Stress Granule Formation and Tumor Progression by Translationally Activating G3BP1. The Journal of Cell Biology, 208, 913-929.
https://doi.org/10.1083/jcb.201411047
[35] Zhang, H., Zhang, S., He, H., et al. (2012) GAP161 Targets and Downregulates G3BP to Suppress Cell Growth and Potentiate Cisplaitin-Mediated Cytotoxicity to Colon Carcinoma HCT116 Cells. Cancer Science, 103, 1848-1856.
https://doi.org/10.1111/j.1349-7006.2012.02361.x
[36] Oi, N., Yuan, J., Malakhova, M., Luo, K., Li, Y., Ryu, J., et al. (2015) Resveratrol Induces Apoptosis by Directly Targeting Ras-GTPase-Activating Protein SH3 Domain-Binding Protein 1. Oncogene, 34, 2660-2671.
https://doi.org/10.1038/onc.2014.194
[37] Gupta, N., Badeaux, M., Liu, Y., et al. (2017) Stress Granule-Associated Protein G3BP2 Regulates Breast Tumor Initiation. Proceedings of the National Academy of Sciences of the United States of America, 114, 1033-1038.
https://doi.org/10.1073/pnas.1525387114
[38] Gong, B., Hu, H., Chen, J., et al. (2013) Caprin-1 Is a Novel microRNA-223 Target for Regulating the Proliferation and Invasion of Human Breast Cancer Cells. Biomedicine & Pharmacotherapy, 67, 629-636.
https://doi.org/10.1016/j.biopha.2013.06.006
[39] Tan, N., Dai, L., Liu, X., et al. (2017) Upregulation of Caprin1 Expression Is Associated with Poor Prognosis in Hepatocellular Carcinoma. Pathology—Research and Practice, 213, 1563-1567.
https://doi.org/10.1016/j.prp.2017.07.014
[40] Campanile, C., Arlt, M.J., Krämer, S.D., et al. (2013) Characterization of Different Osteosarcoma Phenotypes by PET Imaging in Preclinical Animal Models. Journal of Nuclear Medicine, 54, 1362-1368.
https://doi.org/10.2967/jnumed.112.115527
[41] Qiu, Y.Q., Yang, C.W., Lee, Y.Z., et al. (2015) Targeting a Ribonucleoprotein Complex Containing the Caprin-1 Protein and the c-Myc mRNA Suppresses Tumor Growth in Mice: An Identification of a Novel Oncotarget. Oncotarget, 6, 2148-2163.
https://doi.org/10.18632/oncotarget.3236
[42] Neumann, M., Sampathu, D.M., Kwong, L.K., et al. (2006) Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science, 314, 130-133.
https://doi.org/10.1126/science.1134108
[43] Bentmann, E., Neumann, M., Tahirovic, S., et al. (2012) Requirements for Stress Granule Recruitment of Fused in Sarcoma (FUS) and TAR DNA-Binding Protein of 43 kDa (TDP-43). The Journal of Biological Chemistry, 287, 23079-23094.
https://doi.org/10.1074/jbc.M111.328757
[44] Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., et al. (2010) Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue. PLoS ONE, 5, e13250.
https://doi.org/10.1371/journal.pone.0013250
[45] Mcdonald, K.K., Aulas, A., Destroismaisons, L., et al. (2011) TAR DNA-Binding Protein 43 (TDP-43) Regulates Stress Granule Dynamics via Differential Regulation of G3BP and TIA-1. Human Molecular Genetics, 20, 1400-1410.
https://doi.org/10.1093/hmg/ddr021
[46] François-Moutal, L., Felemban, R., Scott, D.D., et al. (2019) Small Molecule Targeting TDP-43’s RNA Recognition Motifs Reduces Locomotor Defects in a Drosophila Model of Amyotrophic Lateral Sclerosis (ALS). ACS Chemical Biology, 14, 2006-2013.
https://doi.org/10.1021/acschembio.9b00481
[47] Fang, M.Y., Markmiller, S., Vu, A.Q., et al. (2019) Small-Molecule Modulation of TDP-43 Recruitment to Stress Granules Prevents Persistent TDP-43 Accumulation in ALS/FTD. Neuron, 103, 802-819.e11.
https://doi.org/10.1016/j.neuron.2019.05.048