新型冠状病毒肺炎并发肾损伤机制研究进展
Research Progress on the Mechanism of COVID-19 Complicated with Renal Injury
DOI: 10.12677/ACM.2021.114227, PDF, HTML, XML, 下载: 322  浏览: 9,351  科研立项经费支持
作者: 刘 媛:青岛大学医学部,山东 青岛;单文红, 黄俊彦, 许颖川, 季文萱*:青岛大学第二临床医学院,肾内科,山东 青岛
关键词: 新型冠状病毒肺炎血管紧张素转换酶2肾损伤发病机制综述COVID-19 ACE-2 AKI Pathogenesis Review
摘要: 2019年新型冠状病毒肺炎疫情被世界卫生组织定义为国际突发公共卫生事件,许多感染者死于多脏器衰竭,其中肾损伤是病毒的主要并发症之一。但目前新型冠状病毒肺炎如何导致急性肾损伤的机制尚不清楚,目前认为血管紧张素转换酶2在其中发挥了重要作用。本文梳理了新型冠状病毒的流行病学、感染者相关肾损伤的临床资料,总结了新型冠状病毒并发肾损伤的发生率,提出了可能的发病机制,以供临床决策参考。
Abstract: The epidemic of COVID-19 in 2019 was defined as an international public health emergency by the World Health Organization. Many infected people died of multiple organ failure, among which kidney injury was one of the main complications. However, at present, the mechanism of how COVID-19 leads to acute renal injury is not clear, and it is believed that angiotensin converting enzyme 2 plays an important role. This paper combs the epidemiology of novel coronavirus and the clinical data of renal injury related to infection, summarizes the incidence of novel coronavirus complicated with renal injury, and puts forward the possible pathogenesis, which can be used as a reference for clinical decision-making.
文章引用:刘媛, 单文红, 黄俊彦, 许颖川, 解秀荣, 季文萱. 新型冠状病毒肺炎并发肾损伤机制研究进展[J]. 临床医学进展, 2021, 11(4): 1585-1591. https://doi.org/10.12677/ACM.2021.114227

1. 引言

冠状病毒由众多病毒家族组成。它们可以分为四个属:α,β,γ和δ冠状病 [1] [2]。其中β冠状病毒包括最著名的SARS-CoV和MERS-CoV两种高致病性人类冠状病毒,分别在2003年和2012年引起严重急性呼吸系统综合症(SARS)和中东呼吸系统综合症(MERS) [3] [4]。他们诱发下呼吸道感染以及肺外表现,导致成百上千死亡病例,死亡率高达50%。2020年1月30日,世界卫生组织宣布SARS-CoV-2疫情构成国际关注的突发公共卫生事件,根据目前报告的COVID-19病例和死亡数已经超过SARS或MERS的病例和死亡数。根据世界卫生组织的数据,到2020年3月31日,SARS-CoV-2感染造成全球大流行。截至2021年4月6日,全球感染SARS-Cov-2的患者人数已上升至1亿多例,死亡人数超过200万 [5]。大多数新冠肺炎患者症状较轻,但约5%的患者出现严重症状,包括急性呼吸窘迫综合征、感染性休克和多器官衰竭 [6]。新冠肺炎经常涉及肾脏损伤,>40%的病例在入院时有异常蛋白尿 [7]。根据欧洲和美国的经验,在接受重症监护的患者中,约有20%~40%患者肾脏受到影响 [8],它被认为是疾病严重程度的标志和生存的负面预后因素。据报道,高达25%的SARS-CoV-2感染的危重患者发生了急性肾损伤(AKI),特别是那些潜在的合并症患者 [9]。国内一项研究表明COVID-19患者入院时肾脏疾病的患病率和住院期间AKI的发生率很高,并且与住院死亡率有关 [7]。国内一项研究发现,3325名新冠肺炎患者中AKI的发生率为46%,其中20%需要进行肾脏替代疗法(KRT) [10]。而需要KRT的AKI与更高的死亡率相关。因此,临床医师应提高对新冠肺炎患者肾脏损伤的认识,探究COVID-19与AKI的联系及致病机制,积极采取有效的措施预防或治疗肾脏损伤。到目前为止,还没有针对新冠肺炎所致AKI的特效药。

2. SARS-CoV-2的人畜共患起源

为了探究新型冠状病毒的跨物种传播,科学家进行一些研究试图确定哪些动物可能是SARS-CoV-2的宿主。据报道,第一个人类病例是与海鲜市场的接触有关的 [11] [12],该市场是出售野生猎物以供消费的。国内一项研究报告发现,与2013年检测到的蝙蝠冠状病毒的基因组相比,此次SARS CoV-2整个基因组与其高度相似(>96%的序列同一性) [13]。Lu等人 [14] 证明SARS-CoV-2与两种蝙蝠来源的SARS样冠状病毒具有88%的同一性。到目前为止,SARS-CoV-2的中间宿主还难以捉摸,潜在的候选对象包括蝙蝠、穿山甲、蛇、貂和其他 [15]。随着病毒溯源的不断深入探究,愈来越多的证据浮现水面,病毒溯源变得扑朔迷离,基于已有的证据资料,我们仍然无法找出新型冠状病毒的来源,病毒溯源将是一个漫长的过程。

3. ACE2-SARS-CoV-2致病的关键分子

冠状病毒主要是通过其表面的S蛋白,识别靶细胞上的相应受体进入细胞,从而造成感染的发生。由于SARS-CoV-2 S蛋白与SARS-CoV S蛋白存在基因序列的相似性(XU等 [16] 的研究提示为76.47%)及结构相似性 [17] 提示SARS-CoV-2可能与SARS-nCoV共享相同的受体。之后的研究结果也证实了这一假想 [18] [19] [20]。Xu等人 [16] 研究发现,2019-nCoVS蛋白的RBD结构域支持与人血管紧张素受体(ACE2)的强相互作用。SARS-CoV-2 S蛋白与ACE2之间存在很强的结合亲和力 [16] [21]。上述的研究均表明ACE2在SARS-CoV-2进入细胞中起着重要作用。因此凡是表达ACE2的细胞都可能成为SARS-CoV-2的靶细胞,受到2019-nCoV感染 [22]。

4. ACE2表达器官在SARS-CoV-2复制和感染性中的“贡献”

正常组织的HPA数据库结果显示,ACE2 mRNA在所有正常组织中表达水平最高的是小肠,其余依次是结肠、十二指肠、肾脏、胆囊;同样,ACE2蛋白表达水平最高的是十二指肠,其余依次为小肠、胆囊、肾脏、睾丸 [23]。但在肺中的表达水平极低 [24] [25]。肾脏是SARS-CoV-2感染的特定靶标 [26]。黄朝林 [27] 等报道,在41名SARS-CoV-2感染患者中,有7%发生了AKI,在重症监护患者中,这一数值甚至更高(高达31%)。关伟杰 [28] 等报道,重症患者的血浆肌酐水平升高了4.3%。在一项113例死于冠状病毒病患者的回顾性研究中发现AKI发生率28.25%,死者的血尿素氮、肌酐、钾的浓度显著高于康复者,(P < 0.05) [29]。国内一项研究发现,3325名新冠肺炎患者中AKI的发生率为46%,其中20%需要进行KRT [10]。在大多数研究中,在整个住院期间,AKI发生在入院后5~9天 [30]。AKI在病情最严重(特别是严重的ARDS,需要有创机械通气)、高龄或患有高血压或糖尿病等并发症的患者中更易发生 [30]。

5. SARS-CoV-2复制在肾脏中的致病机制

新冠肺炎相关AKI的发病机制尚不清楚。肾脏病理包括急性肾小管损伤、肾小球纤维蛋白血栓、肾小管着色管型和塌陷性局灶性节段性肾小球硬化。在电镜下观察到肾标本中有“病毒样”颗粒,在肾标本的肾小球和肾小管腔中都发现了病毒RNA,但病毒存在与损伤之间的联系尚不清楚。目前已提出的肾脏损伤机制包括病毒诱导的直接肾小管或肾小球损伤、脓毒症相关性AKI和微血管血栓形成 [9]。

5.1. SARS-CoV-2复制直接攻击肾脏

有研究表明ACE2在近端肾小管细胞的刷状缘高度表达 [31],推断这或许是COVID-19患者出现肾脏损伤症状,尤其以肾小管损伤发生率高的缘故。我国26例COVID-19患者死后肾组织病理学分析显示肾小管上皮细胞和足细胞受病毒直接感染,并伴有明显的急性肾小管损伤(ATI)和红细胞聚集,继而造成内皮损伤。这些发现中的一些与以前已知的肾脏β冠状病毒感染机制是一致的 [32]。

5.2. SARS-CoV-2感染激活SIRS间接攻击肾脏

除了SARS-CoV-2直接攻击肾脏外,病毒激活的免疫反应也可对肾脏造成损伤。与轻症COVID-19患者相比,重症患者中炎症介质(白细胞介素(IL)2、IL-7、IL-10、粒细胞集落刺激因子(GCSF)、干扰素诱导蛋白10 (IP-10)、单核细胞趋化蛋白1 (MCP1)、巨噬细胞炎性蛋白1α (MIP1A)和肿瘤坏死因子α (TNF-α))表达浓度明显升高 [27]。这些细胞因子可能通过与肾脏驻留细胞相互作用,诱导血管内皮细胞和肾小管功能障碍,参与新冠肺炎急性肾损伤的发生。近期,国外一例患有ARDS同时感染SARS-CoV-2的患者的病理组织活检结果显示 [33],该患者外周血CD4+和CD8+细胞的表达水平明显降低,促炎性T细胞的过度激活,均表明人体感染SARS-CoV-2后,机体免疫系统功能紊乱,进而出现病理性瀑布式的细胞因子风暴介导的免疫损伤,进一步导致AKI及多器官功能障碍的发生、发展。

5.3. 其他因素

COVID-19患者,尤其是重型及危重型,存在多器官功能紊乱,并发脓毒症、脓毒症休克,可能通过过度机体防御反应、细胞凋亡坏死、氧化应激等引起脓毒症相关AKI的发生或加重 [34]。另外COVID-19患者食欲差、常伴呕吐、腹泻、浑身出汗,有效循环血量降低导致肾脏低灌注而引起肾前性AKI;高龄、高血压、糖尿病、也是肾脏易损性因素 [35] [36]。

6. 治疗

目前COVID-19治疗包括:1) 抗病毒药物,其中瑞德西韦(GS-5734)是一种核苷酸类似物,通过抑制关键的病毒RNA聚合酶来抑制病毒复制。最近的一项研究报告说,瑞德西韦能有效地阻断VERO E6细胞中的SARS-CoV-2感染,美国第一例确诊为SARS-CoV-2感染的患者在1月份接受瑞德西韦静脉注射后康复 [37]。一项研究报告了对一小部分重症新冠肺炎患者进行同情治疗的临床结果,具体地说,53名患者中有36名(68%)观察到临床改善 [38]。氯喹(CQ)是一种自1934年发现的9-氨基喹啉,是一种广泛使用的抗疟疾和自身免疫性疾病的药物,被报道为一种潜在的广谱抗病毒药物 [39]。最近的一项研究报道了它在Vero E6细胞中对新冠肺炎的活性(EC(50) = 1.13 μM) [40]。新冠肺炎患者正在接受随机试验(例如,ClinicalTrials.gov:NCT04316377,NCT04323527),以确定CQ的安全性和有效性。虽然一些临床试验表明CQ对新冠肺炎有一些有益的效果,但大多数报道的数据都是初步的 [41]。2) 恢复期血浆治疗 一项报道指出,5例新冠肺炎和急性呼吸窘迫综合征危重患者使用含有中和抗体的恢复期血浆后,他们的临床状况得到了改善 [42]。3) 疫苗的研发。根据世界卫生组织的报告,全球目前有超过100种针对SARS-CoV-2的疫苗处于不同的发展阶段。具体地说,10种候选疫苗已经在临床评估中 [43]。中国先后部署了灭活疫苗、重组蛋白疫苗、腺病毒载体疫苗等5条技术路线同步推进疫苗研发,已经有4款疫苗在国内外开启三期大规模人体试验 [43]。目前我国已上市的四款新冠病毒疫苗,国药集团(SinoPharma) (北京、武汉)生物疫苗、北京科兴中维(SinoVac)、康希诺(CanSino Bio)与中国工程院院士陈薇团队研发的疫苗,前三种疫苗属于灭活疫苗,后一种属于腺病毒载体疫苗。随后在国内或全球范围内对疫苗的有效性及安全性进行临床试验,基于目前的临床研究数据及中国官方媒体报道,国药(SinoPharma)灭活疫苗在中国、阿联酋的III期临床试验显示其预防新冠症状的有效性分别为79.34%、86%。科兴(SinoVac)研制的新型冠状病毒灭活疫苗克尔来福在国内的I/II期临床试验显示出疫苗安全并能在健康志愿者身上诱导产生免疫应答 [44]。科兴生物官网报道了III期临床研究数据,结果显示克尔来福对巴西住院、重症及死亡病例的保护效力为100.00%,对有明显症状且需要就医的新冠病例的保护效力为83.70%,对含不需就医的轻症病例在内的所有新冠病例保护效力为50.65%。在土耳其开展的III期临床试验中克尔来福预防COVID-19的保护效力为91.25%。由康希诺生物(CanSino Bio)和军事科学院陈薇院士团队合作研发的腺病毒载体疫苗(Ad5-nCoV)成为中国第三款被大规模接种的新冠疫苗。该疫苗在接种后28天具有较好的耐受性和免疫原性 [45] [46],巴基斯坦卫生官员透露该疫苗在巴国的III期临床试验中期分析结果显示单针接种疫苗28天后,对重症新冠肺炎的保护效力为100%,总体保护效力为74.8%。康希诺生物(CanSino Bio)已在墨西哥、俄罗斯、阿根廷和智利其余4个国家完成对4万余名受试者的接种,试验将进一步验证该疫苗的有效性。

7. 总结

突如其来的新型冠状病毒,已造成世界上70多万人的感染和数万人的死亡,给全球的生命及财产安全造成极大威胁。COVID-19患者常存在肺脏、肾脏、肠道等多器官受损表现,其中AKI的发生值得关注。在文章中我们主要探讨了SARS-CoV-2的致病机制及导致AKI的猜想。COVID⁃19相关AKI发病机制可能与病毒直接攻击、细胞因子风暴、免疫损伤等有关,但确切分子机制有待进一步研究,需要多学科协作。新型冠状病毒易引发肾脏损伤,严重时导致急性肾衰竭,威胁患者生命。现阶段临床对COVID-19合并AKI患者的治疗经验尚欠缺,未来还需要大量的随机对照实验进行药物的疗效评估和安全性测评,不断提高COVID-19患者的治愈率,降低其病死率。

基金项目

青岛市民生科技计划项目((16-6-2-19-nsh)。

参考文献

[1] Fehr, A.R. and Perlman, S. (2015) Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier, H., Bickerton, E. and Britton, P., Eds., Coronaviruses, Vol. 1282, Humana Press, New York, 1-23.
https://doi.org/10.1007/978-1-4939-2438-7_1
[2] Li, F. (2016) Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology, 3, 237-261.
https://doi.org/10.1146/annurev-virology-110615-042301
[3] Corman, V.M., Eckerle, I., Memish, Z.A., Liljander, A.M., Dijkman, R., Jonsdottir, H., et al. (2016) Link of a Ubiquitous Human Coronavirus to Dromedary Camels. Proceedings of the National Academy of Sciences of the United States of America, 113, 9864-9869.
https://doi.org/10.1073/pnas.1604472113
[4] Xu, J., Zhao, S., Teng, T., Abdalla, A.E., Zhu, W., Xie, L., et al. (2020) Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12, Article No. 244.
https://doi.org/10.3390/v12020244
[5] WHO (2020) COVID-19 Weekly Epidemiological Update—6 April 2021.
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---6-april-2021
[6] Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020) Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet, 395, 1054-1062.
https://doi.org/10.1016/S0140-6736(20)30566-3
[7] Cheng, Y., Luo, R., Wang, K., Zhang, M., Wang, Z., Dong, L., et al. (2020) Kidney Disease Is Associated with In-Hospital Death of Patients with COVID-19. Kidney International, 97, 829-838.
https://doi.org/10.1016/j.kint.2020.03.005
[8] Richardson, S., Hirsch, J.S., Narasimhan, M., Crawford, J.M., McGinn, T., Davidson, K.W., et al. (2020) Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA, 323, 2052-2059.
https://doi.org/10.1001/jama.2020.6775
[9] Gabarre, P., Dumas, G., Dupont, T., Darmon, M., Azoulay, E. and Zafrani, L. (2020) Acute Kidney Injury in Critically Ill Patients with COVID-19. Intensive Care Medicine, 46, 1339-1348.
https://doi.org/10.1007/s00134-020-06153-9
[10] Chen, R., Liang, W., Jiang, M., Guan, W., Zhan, C., Wang, T., et al. (2020) Risk Factors of Fatal Outcome in Hospitalized Subjects with Coronavirus Disease 2019 from a Nationwide Analysis in China. Chest, 158, 97-105.
https://doi.org/10.1016/j.chest.2020.04.010
[11] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
https://doi.org/10.1056/NEJMoa2001017
[12] Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. (2020) Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. New England Journal of Medicine, 382, 1199-1207.
https://doi.org/10.1056/NEJMoa2001316
[13] Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[14] Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020) Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet, 395, 565-574.
https://doi.org/10.1016/S0140-6736(20)30251-8
[15] Ji, W., Wang, W., Zhao, X., Zai, J. and Li, X. (2020) Cross-Species Transmission of the Newly Identified Coronavirus 2019-nCoV. Journal of Medical Virology, 92, 433-440.
https://doi.org/10.1002/jmv.25682
[16] Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., et al. (2020) Evolution of the Novel Coronavirus from the Ongoing Wuhan Outbreak and Modeling of Its Spike Protein for Risk of Human Transmission. Science China Life Sciences, 63, 457-460.
https://doi.org/10.1007/s11427-020-1637-5
[17] Chan, J.F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K.K.-W., Yuan, S., et al. (2020) Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a Patient with Atypical Pneumonia after Visiting Wuhan. Emerging Microbes & Infections, 9, 221-236.
https://doi.org/10.1080/22221751.2020.1719902
[18] Liu, Z., Xiao, X., Wei, X., Li, J., Yang, J., Tan, H., et al. (2020) Composition and Divergence of Coronavirus Spike Proteins and Host ACE2 Receptors Predict Potential Intermediate Hosts of SARS-CoV-2. Journal of Medical Virology, 92, 595-601.
https://doi.org/10.1002/jmv.25726
[19] Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. and Zhou, Q. (2020) Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science, 367, 1444-1448.
https://doi.org/10.1126/science.abb2762
[20] Wan, Y., Shang, J., Graham, R., Baric, R.S. and Li, F. (2020) Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology, 94, e00127-20.
https://doi.org/10.1128/JVI.00127-20
[21] Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science, 367, 1260-1263.
https://doi.org/10.1126/science.abb2507
[22] Zou, X., Chen, K., Zou, J., Han, P., Hao, J. and Han, Z. (2020) Single-Cell RNA-Seqdata Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Frontiers of Medicine, 14, 185-192.
https://doi.org/10.1007/s11684-020-0754-0
[23] 张明鑫, 路宁, 王佳, 朱琳, 崔曼莉. 新型冠状病毒细胞受体血管紧张素转化酶II在消化道及其肿瘤中的表达[J]. 现代肿瘤医学, 2020, 28(7): 1229-1233.
[24] Chen, Y., Guo, Y., Pan, Y. and Zhao, Z.J. (2020) Structure Analysis of the Receptor Binding of 2019-nCoV. Biochemical and Biophysical Research Communications, 525, 135-140.
https://doi.org/10.1016/j.bbrc.2020.02.071
[25] Vieira Braga, F.A., Kar, G., Berg, M., Carpaij, O.A., Polanski, K., Simon, L.M., et al. (2019) A Cellular Census of Human Lungs Identifies Novel Cell States in Health and in Asthma. Nature Medicine, 25, 1153-1163.
https://doi.org/10.1038/s41591-019-0468-5
[26] Deng, Y.Y., Zheng, Y., Cai, G.Y., Chen, X.M. and Hong, Q. (2020) Single-Cell RNA Sequencing Data Suggest a Role for Angiotensin-Converting Enzyme 2 in Kidney Impairment in Patients Infected with 2019-nCoV. Chinese Medical Journal, 133, 1129-1131.
https://doi.org/10.1097/CM9.0000000000000783
[27] Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet, 395, 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
[28] Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., et al. (2020) Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382, 1708-1720.
https://doi.org/10.1101/2020.02.06.20020974
[29] Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. (2020) Clinical Characteristics of 113 Deceased Patients with Coronavirus Disease 2019: Retrospective Study. BMJ, 368, m1091.
https://doi.org/10.1136/bmj.m1091
[30] Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., et al. (2020) Clinical Course and Outcomes of Critically Ill Patients with SARS-CoV-2 Pneumonia in Wuhan, China: A Single-Centered, Retrospective, Observational Study. The Lancet Respiratory Medicine, 8, 475-481.
https://doi.org/10.1016/S2213-2600(20)30079-5
[31] Ye, M., Wysocki, J., William, J., Soler, M.J., Cokic, I. and Batlle, D. (2006) Glomerular Localization and Expression of Angiotensin-Converting Enzyme 2 and Angiotensin-Converting Enzyme: Implications for Albuminuria in Diabetes. Journal of the American Society of Nephrology, 17, 3067-3075.
https://doi.org/10.1681/ASN.2006050423
[32] Su, H., Yang, M., Wan, C., Yi, L.X., Tang, F., Zhu, H.Y., et al. (2020) Renal Histopathological Analysis of 26 Postmortem Findings of Patients with COVID-19 in China. Kidney International, 98, 219-227.
https://doi.org/10.1016/j.kint.2020.04.003
[33] Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., et al. (2020) Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 8, 420-422.
https://doi.org/10.1016/S2213-2600(20)30076-X
[34] Bellomo, R., Kellum, J.A., Ronco, C., Wald, R., Martensson, J., Maiden, M., et al. (2017) Acute Kidney Injury in Sepsis. Intensive Care Medicine, 43, 816-828.
https://doi.org/10.1007/s00134-017-4755-7
[35] Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., et al. (2020) Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323, 1574-1581.
https://doi.org/10.1001/jama.2020.5394
[36] Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., et al. (2020) Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine, 180, 934-943.
https://doi.org/10.1001/jamainternmed.2020.0994
[37] Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., et al. (2020) First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine, 382, 929-936.
https://doi.org/10.1056/NEJMoa2001191
[38] Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., et al. (2020) Compassionate Use of Remdesivir for Patients with Severe Covid-19. New England Journal of Medicine, 382, 2327-2236.
https://doi.org/10.1056/NEJMoa2007016
[39] Savarino, A., Boelaert, J.R., Cassone, A., Majori, G. and Cauda, R. (2003) Effects of Chloroquine on Viral Infections: An Old Drug against Today’s Diseases? The Lancet Infectious Diseases, 3, 722-727.
https://doi.org/10.1016/S1473-3099(03)00806-5
[40] Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020) Remdesivir and Chloroquine Effectively Inhibit the Recently Emerged Novel Coronavirus (2019-nCoV) in Vitro. Cell Research, 30, 269-271.
https://doi.org/10.1038/s41422-020-0282-0
[41] Gao, J., Tian, Z. and Yang, X. (2020) Breakthrough: Chloroquine Phosphate Has Shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies. Bioscience Trends, 14, 72-73.
[42] Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., et al. (2020) Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA, 323, 1582-1589.
https://doi.org/10.1001/jama.2020.4783
[43] Liu, X., Liu, C., Liu, G., Luo, W. and Xia, N. (2020) COVID-19: Progress in Diagnostics, Therapy and Vaccination. Theranostics, 10, 7821-7835.
https://doi.org/10.7150/thno.47987
[44] Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., et al. (2021) Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in Healthy Adults Aged 18-59 Years: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Clinical Trial. The Lancet Infectious Diseases, 21, 181-192.
https://doi.org/10.1016/S1473-3099(20)30843-4
[45] Zhu, F.C., Li, Y.H., Guan, X.H., Hou, L.H., Wang, W.J., Li, J.X., et al. (2020) Safety, Tolerability, and Immunogenicity of a Recombinant Adenovirus Type-5 Vectored COVID-19 Vaccine: A Dose-Escalation, Open-Label, Non-Randomised, First-in-Human Trial. Lancet, 395, 1845-1854.
https://doi.org/10.1016/S0140-6736(20)31208-3
[46] Zhu, F.C., Guan, X.H., Li, Y.H., Huang, J.Y., Jiang, T., Hou, L.H., et al. (2020) Immunogenicity and Safety of a Recombinant Adenovirus Type-5-Vectored COVID-19 Vaccine in Healthy Adults Aged 18 Years or Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet, 396, 479-488.
https://doi.org/10.1016/S0140-6736(20)31605-6