2型糖尿病患者C肽与非酒精性脂肪肝的关系
C-Peptide and Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes
DOI: 10.12677/ACM.2021.114237, PDF, HTML, XML, 下载: 386  浏览: 536 
作者: 黄雅静, 程炳菲, 周 月, 王颜刚*:青岛大学附属医院内分泌科,山东 青岛
关键词: C肽2型糖尿病非酒精性脂肪肝C-Peptide Type 2 Diabetes Non-Alcoholic Fatty Liver Disease
摘要: 背景:2型糖尿病和非酒精性脂肪肝(NAFLD)常常共同存在,并且可以通过协同作用导致不良结局,不仅会增加糖尿病并发症的发生风险,也会增加NAFLD进展为肝硬化、肝癌等风险。材料与方法:这是一项回顾性横断面研究,根据纳入排除标准,我们共纳入261名2型糖尿病患者。根据BMI分为肥胖组和非肥胖组。留取空腹血检测空腹血糖、空腹C肽、空腹胰岛素、糖化血红蛋白、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)等。结果:肥胖组的患者空腹血糖、HbA1c、空腹C肽、空腹胰岛素均显著高于非肥胖组(P < 0.05)。校正了性别、年龄、LDL、HDL、TC、TG后,Logistic回归显示,在肥胖组,空腹C肽的增加是发生NAFLD的危险因素(OR = 1.403, 95%CI (1.052, 1.871)),而在非肥胖组,没有观察到空腹C肽的增加与NAFLD之间的关系。此外,无论肥胖组还是非肥胖组,均没有观察到空腹胰岛素与NAFLD之间的关系。结论:随着空腹C肽的增加,肥胖型2型糖尿病患者发生NAFLD的风险增加,而在非肥胖型的2型糖尿病患者中,没有观察到C肽增加与NAFLD之间的关系。C肽的分泌与肥胖型2型糖尿病患者发生NAFLD密切相关,但仍然需要前瞻性的研究探索C肽与非酒精性脂肪肝之间的关系。
Abstract: Background: Type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) often coexist, and can lead to adverse outcomes. The synergistic effects not only increase the risk of diabetes complications, but also increase the risk of NAFLD developing into cirrhosis and liver cancer. Materials and methods: This is a retrospective cross-sectional study. According to the inclusion and exclusion criteria, we included a total of 261 patients with type 2 diabetes. According to BMI, they are divided into obese group and non-obese group. Blood samples were collected after fasting overnight. Detection indicators include fasting blood glucose, fasting C-peptide, fasting insulin, glycosylated hemoglobin, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL). Results: The fasting blood glucose, HbA1c, fasting C-peptide, and fasting insulin of the obese group were significantly higher than those of the non-obese group (P < 0.05). After adjusting for gender, age, LDL, HDL, TC, TG, logistic regression showed that in the obese group, with the increasing of fasting C-peptide, the risk of NAFLD increased (OR = 1.403, 95%CI (1.052, 1.871)). While in the non-obese group, we didn’t observe the relationship between the increasing of fasting C-peptide and NAFLD. In addition, no matter whether the obese group or the non-obese group, the relationship between fasting insulin and NAFLD was not observed. Conclusion: With the increase of fasting C-peptide, the risk of NAFLD in obese type 2 diabetic patients increased, while in non-obese type 2 diabetic patients, no relationship between the increase in C-peptide and NAFLD was observed. The secretion of C-peptide is closely related to the occurrence of NAFLD in obese type 2 diabetic patients, but prospective studies are still needed to explore the relationship between C peptide and non-alcoholic fatty liver.
文章引用:黄雅静, 程炳菲, 周月, 王颜刚. 2型糖尿病患者C肽与非酒精性脂肪肝的关系[J]. 临床医学进展, 2021, 11(4): 1649-1654. https://doi.org/10.12677/ACM.2021.114237

1. 引言

随着人口的老龄化和生活方式的西方化,中国的糖尿病患病率从1980年的0.67%迅速增加到2013年的10.4% [1]。研究表明,高达70%的2型糖尿病(T2DM)患者合并NAFLD [2],而患有非酒精性脂肪肝的患者罹患糖尿病的风险增加5倍 [3]。非酒精性脂肪肝的发病机制是肝细胞脂肪变性和肝细胞损伤 [4]。在NAFLD中,肝脏摄取和新生脂肪生成增加,而脂肪酸氧化的补偿性增强不足以使脂质水平正常化,甚至可能通过诱导氧化应激(尤其是线粒体功能受损以及过氧化物酶体和细胞色素氧化增加)来促进细胞损伤和疾病进展 [5]。

尽管NAFLD的病理生理学很复杂,但大量证据表明,NAFLD、胰岛素抵抗、肥胖症和T2DM经常并存 [6]。一方面,NAFLD增加了2型糖尿病患者发生糖尿病并发症(包括大血管和微血管并发症)的风险,另一方面,T2DM增加了NAFLD进展为肝硬化,肝细胞癌甚至死亡的风险 [7]。众所周知,胰岛素抵抗与NAFLD的发生密切相关。胰岛素可促进肝脏摄取游离脂肪酸和游离胆固醇,增加从头脂肪生成,促进肝脏中葡萄糖向脂肪酸的转化。因此,胰岛素抵抗导致高胰岛素血症,再加上循环中葡萄糖和游离脂肪酸浓度的增加,导致中性脂质在肝脏中过度积聚 [8] [9]。此外,胰岛素抵抗通常与慢性低度炎症有关,导致免疫细胞和脂肪细胞释放细胞因子,造成肝脏损害和肝脏疾病的进展 [10]。此外,还有研究表明外周胰岛素敏感性与肝内甘油三酸酯和内脏脂肪含量之间有非常强的负相关性,肝胰岛素抵抗可能先于外周胰岛素抵抗 [11]。而与胰岛素等摩尔分泌的C肽也被证明是一种生物活性物质,在糖尿病并发症的发生发展中发挥重要作用。但是目前关于空腹C肽与NAFLD的研究较少,为了探索空腹C肽与NAFLD之间的关系,我们开展了这项研究。

2. 材料与方法

2.1. 参与者

这是一项回顾性横断面研究。纳入标准:在2018~2019年期间就诊于青岛大学附属医院,确诊为2型糖尿病的患者;年龄18~80岁;性别不限,糖尿病病程 < 5年。排除标准:① 近期发生低血糖昏迷、糖尿病酮症、高糖高渗性昏迷、乳酸中毒等糖尿病急性并发症;② 合并严重心力衰竭、严重肝病、恶性肿瘤的患者;③ 免疫功能低下者;④ 酗酒,乙醇摄入量女性 > 70 g/周,男性 > 140 g/周 [12];⑤ 其他慢性肝脏病如自身免疫性、药物性肝病等;⑥ 乙肝、丙肝肝炎病毒标志物阳性的患者。根据纳入排除标准,我们从电子信息系统中获取了2018年~2019年就诊于青岛大学附属医院,诊断为2型糖尿病的患者共261名。本研究获得青岛大学伦理委员会批准。

2.2. 数据采集

入院时测量患者的身高,体重,收缩压、舒张压等。BMI由身高和体重计算得出,BMI = 体重(Kg)/身高的平方(m2)。过夜禁食后收集血液样本检测空腹血糖(FPG),空腹胰岛素,空腹C肽,糖化血红蛋白(HbA1c),甘油三酸酯(TG),总胆固醇(TC),低密度脂蛋白胆固醇(LDL-C)和高密度测试脂蛋白胆固醇(HDL-C)。根据BMI分为肥胖组(BMI ≥ 25 kg/m2)和非肥胖组(BMI < 25 kg/m2)。由超声技术人员进行肝脏超声检查。

2.3. 统计学方法

使用SPSS (22.0, Chicago, IL USA)分析数据。连续变量表示为均值 ± 标准差。分类变量表示为相对比例(%)。p值 < 0.05被认为是显著的。我们使用单因素方差分析检验比较连续型变量的组间差异。卡方(χ2)测试用于比较类别变量。Logistic回归分析用于分析空腹C肽、空腹胰岛素与NAFLD的之间关系。

3. 结果

3.1. 一般情况

我们共纳入261名患者,肥胖组168名,39.5%为女性,平均年龄58.24岁;非肥胖组93人,49.5%为女性,平均年龄59.4岁,两组之间没有显著差异。肥胖组的患者空腹血糖、HbA1c、空腹C肽、空腹胰岛素均显著高于非肥胖组。两组之间甘油三酯、总胆固醇、低密度脂蛋白之间没有显著差异,而肥胖组的高密度脂蛋白显著高于非肥胖组(见表1)。

3.2. 回归分析

Logistic回归显示,在肥胖组,空腹C肽的增加是发生NAFLD的危险因素(OR = 1.403, 95%CI (1.052, 1.871)),而在非肥胖组,空腹C肽的增加与NAFLD之间没有发现显著的关联。无论是在肥胖组或非肥胖组,均未发现空腹胰岛与脂肪肝之间的关联(见表2)。校正了性别、年龄、LDL、HDL、TC、TG后,只有肥胖组空腹C肽的增加是发生NAFLD的危险因素(OR = 1.479, 95%CI (1.062, 2.059)) (见表3)。

Table 1. General information of patients

表1. 肥胖组与非肥胖组的一般情况

Table 2. Fasting C-peptide, insulin and fatty liver

表2. 空腹C肽、胰岛素与脂肪肝发生风险

Table 3. Fasting C-peptide, insulin and fatty liver.(Adjustedforgender, age, LDL, HDL, TG)

表3. 空腹C肽、胰岛素与脂肪肝发生风险(校正性别、年龄、LDL、HDL、TC、TG)

4. 讨论

随着糖尿病病程的增加,2型糖尿病患者的胰岛功能逐渐衰竭,糖尿病并发症的发生率增加,为了更好的探索C肽与NAFLD之间的关系,我们只纳入了糖尿病病程小于5年的2型糖尿病患者。当BMI ≥ 25 kg/m2时,空腹C肽的增加是NAFLD的危险因素。而在BMI < 25 kg/m2的人群中并没有发现空腹C肽与NAFLD之间的关系。一方面,肥胖组的C肽水平更高,这表明肥胖组的胰岛素抵抗程度更高,另一方面,越来越多的研究表明,C肽是一种生物活性物质,在糖尿病并发症的发生中也发挥重要作用 [13]。以往也有临床研究表明较高的C肽水平与NAFLD增加相关 [14]。一些关于肥胖和糖尿病人群的研究中已经发现了C肽与NAFLD存在关联 [15] [16]。一项纳入18,825名参与者的研究表明,空腹C肽、腰围、谷丙转氨酶是美国人群NAFLD的三个最重要的预测指标 [17]。但是目前尚没有进一步的研究阐明C肽在NAFLD发生中的机制。

生理浓度的C肽能够与细胞膜特异性结合,激活下游信号分子,发挥抗氧化、抗炎、抗凋亡的作用 [18]。已有的研究表明,C肽的缺乏会促进糖尿病并发症的发生,C肽替代治疗已经在临床前动物实验中取得显著的疗效。在1型糖尿病患者和小鼠模型中,C肽替代治疗可以减轻蛋白尿,降低肾小球滤过率,从而发挥肾脏保护作用 [19]。C肽还可通过阻断VEGF的作用(抑制ROS、应力纤维形成,促进VE-钙黏着蛋白分解和降低内皮细胞通透性)来改善糖尿病视网膜病变 [13]。肥胖的2型糖尿病患者中,较高浓度的C肽可能主动参与了炎症反应和促进动脉粥样硬化的过程 [20]。在2型糖尿病早期,C肽的分泌增加,C肽可以沉积至血管内皮,并通过启动或促进单核细胞迁移至血管内皮促进动脉粥样硬化的发生 [21]。从以往的研究中,我们可以推测C肽是一把双刃剑,C肽的缺乏和过多均会增加糖尿病并发症的风险,C肽与NAFLD的关系可能也是这样。

在非肥胖人群中,C肽的增加并不会增加脂肪肝的风险,这与我们的推测相符合。以往有研究表明,1型糖尿病与肝脏脂肪变性的风险增加无关 [22]。但是尚且没有具体的理论依据阐明这种关系。根据目前的研究结果,我们推测肥胖与C肽的过度分泌是T2DM促进NAFLD发生的重要因素。而在非肥胖的人群中,C肽的水平大多处于正常范围,因此我们没有观察到C肽的增加与NAFLD之间显著的关系。

此外,空腹胰岛素的增加并没有增加脂肪肝的风险,一方面可能是由于我们的样本量较小,另一方面可能与患者应用外源性胰岛素有关。在磁共振技术的支持下,有研究表明,甘精胰岛素的使用能够改善糖尿病患者的肝脏脂肪负担 [23]。在新技术的支持下,关于外源性胰岛素与脂肪肝的关系仍然需要大规模的研究进行验证。

我们的研究仍然有一些局限性。首先,尽管肝活检仍是诊断NAFLD的金标准,但本研究中NAFLD的诊断是基于肝超声结果。其次,我们的研究是一项横断面研究,由于研究本身的局限性,需要前瞻性的临床试验进一步探索。

5. 小结

随着空腹C肽的增加,肥胖型2型糖尿病患者合并非酒精性脂肪肝的风险增加,而非肥胖型的2型糖尿病患者中没有发现C肽的增加与脂肪肝风险的关系。C肽的分泌与肥胖型2型糖尿病患者合并非酒精性脂肪肝密切相关,仍然需要更多的前瞻性研究探索C肽与非酒精性脂肪肝之间的关系。

NOTES

*通讯作者。

参考文献

[1] Jia, W., Weng, J., Zhu, D., et al. (2019) Standards of Medical Care for Type 2 Diabetes in China 2019. Diabetes/Metabolism Research and Reviews, 35, e3158.
https://doi.org/10.1002/dmrr.3158
[2] Targher, G., Bertolini, L., Padovani, R., et al. (2007) Prevalence of Nonalcoholic Fatty Liver Disease and Its Association with Cardiovascular Disease among Type 2 Diabetic Patients. Diabetes Care, 30, 1212-1218.
https://doi.org/10.2337/dc06-2247
[3] Adams, L., Waters, O., Knuiman, M., et al. (2009) NAFLD as a Risk Factor for the Development of Diabetes and the Metabolic Syndrome: An Eleven-Year Follow-Up Study. The American Journal of Gastroenterology, 104, 861-867.
https://doi.org/10.1038/ajg.2009.67
[4] Peng, L., Wu, S., Zhou, N., et al. (2021) Clinical Characteristics and Risk Factors of Nonalcoholic Fatty Liver Disease in Children with Obesity. BMC Pediatrics, 21, 122.
https://doi.org/10.1186/s12887-021-02595-2
[5] Ipsen, D., Lykkesfeldt, J., Tveden-Nyborg, P.J.C., et al. (2018) Molecular Mechanisms of Hepatic Lipid Accumulation in Non-Alcoholic Fatty Liver Disease. Cellular and Molecular Life Sciences, 75, 3313-3327.
https://doi.org/10.1007/s00018-018-2860-6
[6] Mantovani, A. and Dalbeni, A. (2021) Treatments for NAFLD: State of Art. International Journal of Molecular Sciences, 22, 2350.
https://doi.org/10.3390/ijms22052350
[7] Hazlehurst, J., Woods, C., Marjot, T., et al. (2016) Non-Alcoholic Fatty Liver Disease and Diabetes. Metabolism, 65, 1096-1108.
https://doi.org/10.1016/j.metabol.2016.01.001
[8] Samuel, V. and Shulman, G.J. (2018) Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metabolism, 27, 22-41.
https://doi.org/10.1016/j.cmet.2017.08.002
[9] Engin, A. (2017) Non-Alcoholic Fatty Liver Disease. Advances in Experimental Medicine and Biology, 960, 443-467.
https://doi.org/10.1007/978-3-319-48382-5_19
[10] Ercin, C., Dogru, T., Genc, H., et al. (2015) Insulin Resistance but Not Visceral Adiposity Index Is Associated with Liver Fibrosis in Nondiabetic Subjects with Nonalcoholic Fatty Liver Disease. Metabolic Syndrome and Related Disorders, 13, 319-325.
https://doi.org/10.1089/met.2015.0018
[11] Hwang, J., Stein, D., Barzilai, N., et al. (2007) Increased Intrahepatic Triglyceride Is Associated with Peripheral Insulin Resistance: In Vivo MR Imaging and Spectroscopy Studies. American Journal of Physiology-Endocrinology and Metabolism, 293, E1663-E1669.
https://doi.org/10.1152/ajpendo.00590.2006
[12] 中华医学会肝病学分会脂肪肝和酒精性肝病学组. 中国非酒精性脂肪性肝病诊疗指南(2010年修订版) [J]. 中国医学前沿杂志(电子版), 2012, 4(7): 4-10.
[13] Landreh, M., Johansson, J., Jörnvall, H., et al. (2013) C-Peptide: A Molecule Balancing Insulin States in Secretion and Diabetes-Associated Depository Conditions. Hormone and Metabolic Research, 45, 769-773.
https://doi.org/10.1055/s-0033-1347208
[14] Zhao, L., Ma, J., Wang, S., et al. (2015) Relationship between β-Cell Function, Metabolic Control, and Microvascular Complications in Type 2 Diabetes Mellitus. Diabetes Technology & Therapeutics, 17, 29-34.
https://doi.org/10.1089/dia.2014.0214
[15] Chen, M., Li, T., Zhang, R., et al. (2015) Clinical Features of Non-Alcoholic Fatty Liver Disease and Its Relationship with Serum C-Peptide Levels in Patients with Latent Autoimmune Diabetes in Adults. Chinese Medical Journal, 95, 3575-3578.
[16] Tricò, D., Caprio, S., Rosaria Umano, G., et al. (2018) Metabolic Features of Nonalcoholic Fatty Liver (NAFL) in Obese Adolescents: Findings from a Multiethnic Cohort. Hepatology, 68, 1376-1390.
https://doi.org/10.1002/hep.30035
[17] Atsawarungruangkit, A., Chenbhanich, J. and Dickstein, G. (2018) C-Peptide as a Key Risk Factor for Non-Alcoholic Fatty Liver Disease in the United States Population. World Journal of Gastroenterology, 24, 3663-3670.
https://doi.org/10.3748/wjg.v24.i32.3663
[18] 王建, 陈红. C肽在糖尿病慢性并发症发生和发展中的作用及其机制[J]. 中华内分泌代谢杂志, 2008, 24(4): 463-464.
[19] Yaribeygi, H., Maleki, M., Sathyapalan, T., et al. (2019) The Effect of C-Peptide on Diabetic Nephropathy: A Review of Molecular Mechanisms. Life Sciences, 237, Article ID: 116950.
https://doi.org/10.1016/j.lfs.2019.116950
[20] Janowska, J., Chudek, J., Olszanecka-Glinianowicz, M., et al. (2016) Interdependencies among Selected Pro-Inflammatory Markers of Endothelial Dysfunction, C-Peptide, Anti-Inflammatory Interleukin-10 and Glucose Metabolism Disturbance in Obese Women. International Journal of Medical Sciences, 13, 490-499.
https://doi.org/10.7150/ijms.14110
[21] Marx, N., Walcher, D., Raichle, C., et al. (2004) C-Peptide Colocalizes with Macrophages in Early Arteriosclerotic Lesions of Diabetic Subjects and Induces Monocyte Chemotaxis in Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 540-545.
https://doi.org/10.1161/01.ATV.0000116027.81513.68
[22] Li, W., Huang, E. and Gao, S. (2017) Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. Journal of Alzheimer’s Disease, 57, 29-36.
https://doi.org/10.3233/JAD-161250
[23] Tang, A., Rabasa-Lhoret, R., Castel, H., et al. (2015) Effects of Insulin Glargine and Liraglutide Therapy on Liver Fat as Measured by Magnetic Resonance in Patients with Type 2 Diabetes: A Randomized Trial. Diabetes Care, 38, 1339-1346.
https://doi.org/10.2337/dc14-2548