多囊卵巢综合征发病机制探讨
Pathogenesis of Polycystic Ovary Syndrome
DOI: 10.12677/ACM.2021.114244, PDF, HTML, XML, 下载: 340  浏览: 1,560 
作者: 朱海静, 李泳诗, 欧湘红*:南华大学教学医院广东省第二人民医院,广东 广州;广东省第二人民医院生殖医学中心生殖力保护实验室,广东 广州;李妍楚, 杜文豪, 杨琳俐:广东省第二人民医院生殖医学中心生殖力保护实验室,广东 广州
关键词: 多囊卵巢综合征HPO轴功能紊乱肠道菌群生物节律胰岛素抵抗Polycystic Ovary Syndrome HPO Axis Dysfunction Intestinal Flora Circadian Rhythm Insulin Resistance
摘要: 多囊卵巢综合征(polycystic ovary syndrome, PCOS)是育龄女性最常见的疾病,整体患病率为10%~19.9%,具有多种短期和长期不良后果,是一种影响全世界数百万妇女的生殖、内分泌和代谢紊乱性疾病。至今该病的发生机制仍不明确,大多数学者认为PCOS为遗传易感基因与环境因素相互作用的结果,对该病的治疗策略及对远期并发症的管理方法仍然有限。本文是对与PCOS发病相关的潜在病因机制的系统综述,通过对发病机制的探索,寻找未来治疗的新靶点、新方向。
Abstract: Polycystic ovary syndrome (PCOS) is the most common disease in women of childbearing age, which overall prevalence rate is 10%~19.9%. It is a pathema that causes a variety of short-term and long-term adverse consequences in reproduction, endocrine and metabolism that affects millions of women all over the world. Nevertheless, the pathogenesis of PCOS is still unclear. Most experts believe that PCOS is the result of the interaction of genetic susceptibility genes and environmental factors. The treatment strategies and management methods of long-term complications of PCOS are still limited. This article is a systematic review of the underlying pathogenesis of PCOS targeting for looking for new targets and new directions of treatment in the future through the exploration of the pathogenesis.
文章引用:朱海静, 李泳诗, 李妍楚, 杜文豪, 杨琳俐, 欧湘红. 多囊卵巢综合征发病机制探讨[J]. 临床医学进展, 2021, 11(4): 1703-1709. https://doi.org/10.12677/ACM.2021.114244

1. 引言

多囊卵巢综合征(polycystic ovary syndrome, PCOS)是育龄女性最常见的内分泌和代谢疾病,以卵巢多囊样改变、排卵障碍、高雄激素血症、多毛、胰岛素抵抗以及肥胖为特征的病变。诊断采用2003年鹿特丹专家会议推荐的标准,根据研究人群背景的不同,PCOS的患病率为10%~19.9% [1],在育龄期女性无排卵性不孕中占75%,多毛女性中可高达85%以上 [2]。患有PCOS的妇女患2型糖尿病、代谢综合征、心血管疾病(如高血压、心脏病)、妇科疾病(如不孕、子宫内膜异位症、子宫内膜癌和卵巢恶性肿瘤)、妊娠并发症(如子痫、早产、低出生体重)以及未来的情绪和精神障碍的风险增加 [3] [4],具有多种短期和长期不良后果,是一种影响全世界数百万妇女的生殖、内分泌和代谢紊乱性疾病。

2. 多囊卵巢综合征病因机制研究

自1990年美国国立卫生研究院主办的多囊卵巢综合征会议以来,人们逐渐认识到,该综合征所包含的卵巢功能障碍的症状和体征比原始诊断标准所定义的范围更广。2003年鹿特丹共识研讨会得出结论,PCOS仍然是一个综合征,因此没有单一的诊断标准定义临床诊断 [5]。但事实上PCOS的定义是相当直接的,促性腺激素性、类固醇性、代谢性,并且卵巢和/全身基因缺陷均已被发现,PCOS全基因组关联研究已经确定了与促性腺激素分泌作用、卵巢卵泡发育、胰岛素作用相关的候选基因附近的感兴趣的位点 [6],然而,尽管在过去的20年里在理解疾病的病理生理学和诊断方面取得了重大进展,但该疾病发生机制仍不明确 [7]。

2.1. 多囊卵巢综合征H-P-O轴功能紊乱与排卵障碍

多囊卵巢综合征的定义和病因假说不断发展,其病理生理学基础之一仍为下丘脑–垂体–卵巢轴(hypothalamic-pituitary-ovarianaxis, HPOA)神经内分泌异常所致的内在卵巢功能障碍,HPO轴调节月经周期、卵巢激素分泌、排卵和生育,正常的排卵是中枢释放的促性腺激素和发育中的卵泡产生的细胞因子之间信号同步的结果。在下丘脑–垂体水平,PCOS患者表现出促性腺激素释放激素(Gonadotropin-releasing hormone, GnRH)分泌增加,包括促黄体生成素(luteinizing hormone, LH)分泌脉冲和频率以及循环水平增加,同时伴有促卵泡刺激素(follicle-stimulating hormone, FSH)的相对缺乏 [8],抗苗勒激素(Anti-Mullerian hormone, AMH)的高水平也阻断了FSH的作用,导致高雄激素血症并抑制进一步的原始卵泡募集 [9],紊乱的卵巢–垂体–下丘脑反馈性加剧了促性腺激素的分泌异常。

另外研究表明多囊卵巢综合征(PCOS)女性无排卵的特征是在早期的有腔卵泡期即出现了生长停滞。LH、FSH、胰岛素样生长因子1 (IGF1)、AMH、雄激素等转换相关酶的协调和相互作用受到干扰,导致少排卵(不规则排卵)或无排卵。这是由于FSH分泌不足和(或) FSH作用受到卵巢内调节因子局部抑制的结果 [10]。另外卵泡本身有卵巢旁分泌、细胞因子和生长因子等调节剂也起一定的作用,影响着PCOS的卵泡发育 [11]。

FSH、LH及其受体的基因变异可能是多囊卵巢综合征患者与健康对照者FSH敏感性差异的部分原因 [12],其他研究已报道了与循环FSH水平相关的基因变异以及体内对外源性FSH和枸橼酸克罗米芬的反应,提示其中一些变异可能在多囊卵巢综合征背景下具有功能意义。总之HPO轴功能紊乱导致异常的垂体促性腺激素分泌与排卵障碍产生一个自我延续的内分泌功能障碍周期。

2.2. 多囊卵巢综合征与高雄激素血症

高雄激素血症被认为是PCOS生殖症状加重和代谢综合征发展的重要原因之一。过量的雄激素主要来自卵巢和肾上腺。研究表明来自卵巢的过量雄激素是PCOS最重要的诱导因素之一 [13]。高雄激素血症的女性在青春期早期就观察到黄体生成素分泌脉冲及分泌量的增加,提示其导致促性腺激素释放异常可能是PCOS的主要缺陷,至少在一些患者中是这样。升高的LH水平使卵泡膜细胞中PI3K/AKT信号过度激活可导致雄激素过量 [14],促进原始卵泡生长的启动募集和增加生长中有腔卵泡数量 [15],同时高雄激素会损害颗粒细胞功能并改变卵泡的微环境,影响卵泡发育甚至导致卵泡闭锁 [16],进一步损害卵巢功能;另一方面LH对卵泡膜细胞的过度刺激进一步被胰岛素对卵泡膜细胞的促性腺作用所加剧,直接或间接作用于胰岛素受体 [17] 或血清胰岛素升高抑制肝脏性激素结合球蛋白(SHBG)的产生,从而加剧了游离睾酮水平的升高 [18],研究报道过量的雄激素可能通过颗粒细胞中MAPK和(p)-ERK1/2的下调,进而影响颗粒细胞功能导致卵泡成熟及排卵障碍 [19]。另有研究表明雄激素处理的大鼠模型,可能通过调节增强过氧化物酶体增殖物激活受体γ (PPARγ)依赖性PTEN/p-Akt在颗粒细胞中的表达,从而改变颗粒细胞的增殖影响卵泡成熟 [20]。凋亡在卵泡的生长发育中起着重要作用,而过度激活的凋亡通过将凋亡信号从颗粒细胞传递到卵母细胞影响卵母细胞的发育。雄激素通过PI3K/AKT/FOXO3a通路促进原始卵泡的激活,但它抑制卵母细胞中生长分化因子9 (GDF9)的表达,从而阻断初级卵泡向次级卵泡的过渡,这可能是最终导致卵母细胞凋亡的根本因素之一 [21]。有研究报道线粒体功能障碍参与多囊卵巢综合征的发生发展,雄激素过量可能导致线粒体自噬而诱导颗粒细胞凋亡。动力相关蛋白1 (Drp1)是一种参与线粒体分裂的细胞质GTPase,雄激素(dihydrotestosterone,DHT)可通过巨噬细胞上调自噬和凋亡影响PCOS的颗粒细胞功能 [22]。另外,雄激素过量可诱导转录因子C/EBP同源蛋白和凋亡受体5等错误折叠蛋白反应(UPR)基因在PCOS的颗粒细胞中表达,导致内质网应激和细胞凋亡 [23]。总之,高雄激素血症加重了PCOS的生殖表型。

2.3. 多囊卵巢综合征与胰岛素抵抗

多囊卵巢综合征是目前公认的一种重要的代谢障碍,可显著增加2型糖尿病的发病风险。肥胖型PCOS女性有明显的胰岛素抵抗与葡萄糖耐量受损,两者都是2型糖尿病(type 2 diabetes mellitus, T2DM)的驱动因素,研究表明PCOS患者近50%会发展为代谢综合征 [24],事实上,多囊卵巢综合征患者患2型糖尿病的风险是同龄对照组女性的5~7倍 [25]。值得注意的是,胰岛素抵抗和高胰岛素血症也存在于大多数瘦型PCOS女性中,其胰岛素敏感性降低可能与血浆脂联素水平通过AMPK在人体骨骼肌中发挥调节作用有关,此外,异常的丙酮酸脱氢酶(PDH)调节可能导致全身代谢敏感性降低,从而导致胰岛素抵抗 [26]。在非代谢途径中,胰岛素抵抗刺激卵巢内雄激素的产生 [27],与促性腺激素通过其同源受体调节卵巢类固醇生成。此外,雄激素促进多囊卵巢综合征的胰岛素抵抗,在胰岛素抵抗个体中,高胰岛素血症是一个关键的代偿机制,旨在维持葡萄糖稳态,胰岛素分泌的增加和清除的减少都可能导致这种现象发生,研究发现血清雄激素特异性调节胰岛素清除。因此,雄激素可能主要通过减少胰岛素降解导致PCOS女性高胰岛素血症,但其潜在机制尚不清楚,雄激素与胰岛素抵抗之间的因果关系还需要进一步探索 [28]。

2.4. 多囊卵巢综合征与慢性炎症

Kelly等2001年首次提出多囊卵巢综合征患者的炎症标志物c反应蛋白(CRP)浓度明显高于月经节律及雄激素水平正常的人群,他们提出PCOS患者存在低级别慢性炎症并对远期并发症产生影响 [29]。一项研究表明PCOS中血清炎性因子白细胞介素(IL)-6呈高水平,与胰岛素抵抗及高雄激素血症存在病理生理联系,是胰岛素抵抗与炎症间起着连接作用的细胞因子 [30],并且影响PCOS的临床特征。另一项研究也证实了来源于脂肪细胞的炎症细胞因子肿瘤坏死因子α (TNF-α)协同IL-6通过损害胰岛素受体信号来诱导胰岛素抵抗,此外,TNF-α和IL-6已被证明与胰岛素一起抑制颗粒细胞芳香化酶,并有助于PCOS中持续的雄激素合成 [31] [32]。肠道菌群改变影响PCOS的机制研究是近几年炎症学说的热点,研究表明患有PCOS的女性中,肠道内产生脂多糖的革兰氏阴性菌数量增加,会引起炎症、胰岛素抵抗和肥胖 [33] [34] [35]。另有报道显示拟杆菌在PCOS患者的肠道微生物群中显著升高,移植患有PCOS女性的粪便微生物群导致雌性小鼠卵巢功能破坏增加、胰岛素抵抗、胆汁酸代谢改变、白细胞介素-22分泌减少和不孕,这一发现与PCOS患者体内白细胞介素-22水平降低相一致,说明改变肠道微生物群、胆汁酸代谢及增加白细胞介素-22水平可能有利于PCOS治疗 [36]。PCOS肠道微生物群的失调表现在多样性减少,一些与代谢紊乱相关的细菌种类的丰度发生变化,但是值得注意的是,这些研究的结果并不一致,而且还不清楚肠道微生物群在不同PCOS表型中是如何变化的,因此尚需要进一步的研究探索。

2.5. 多囊卵巢综合征遗传与表观遗传

多囊卵巢综合征是一种高度遗传、多基因、多因素的复杂疾病。其遗传基础在家族间和家族内各不相同,但都有共同的遗传途径 [37]。由于其复杂性和异质性,单一基因或相关基因在单个家族中尚未见报道。大群体的病例对照研究和全基因组关联研究(GWAS)似乎有助于发现可能的联系。通过家族关联或者全基因组关联许多候选基因已经被研究,包括与促性腺激素分泌,卵泡发育,胰岛素分泌相关的FSHB (促卵泡激素b亚基基因),FSHR (促卵泡激素受体基因),LHCGR (促黄体激素(LH)受体基因),THADA (甲状腺蛋白基因),ERBB4 (Erb-B2受体酪氨酸激酶4基因,也称为HER4),GATA4NEIL2FDFT1DENND1A (包含1A基因的正常和肿瘤结构域差异表达),RAB5BSUOXHMGA2INSR (胰岛素受体基因) [38] [39]。但是这种变异与多囊卵巢综合征的功能异常联系起来才刚刚开始,迄今为止全基因组关联研究鉴定的相关位点所占的遗传率比例不到10%,仍然任重而道远 [7]。多囊卵巢综合征的表观遗传学是研究基因表达的遗传性变化,这些变化不是由DNA序列改变引起的,而是有丝分裂和跨代遗传的,不恰当的表观遗传重编程已被确定与胎儿起源的常见病有关,许多疾病都有表观遗传参与的报道,如2型糖尿病、PCOS、代谢综合征、肥胖 [40] [41]。据报道,胎儿期宫内较高的雄激素分泌会导致模型动物出生的幼崽出现与PCOS相似的症状,PCOS表观遗传学参与突出了该病的复杂性 [42] [43]。

2.6. 多囊卵巢综合征与生物钟节律

多囊卵巢综合征(PCOS)等生育障碍的一个共同特征是神经内分泌功能紊乱,导致卵巢类固醇激素分泌模式和时间的不规则。轮班工作、熬夜等不良生活习惯所致的昼夜节律紊乱被发现与促性腺激素和性类固醇分泌的改变有关 [44],研究表明,激素分泌模式的不规则会对生物钟系统产生全面的影响,卵巢等外周组织时钟基因表达的改变可能是这些疾病相关的激素失衡的结果或部分原因,这种对卵巢生物钟基因表达时间的影响可能会加重雄激素过多对类固醇生物合成和排卵反应途径关键成分的负面影响,进而加重生殖相关的内分泌疾病,特别是像PCOS这类由异常类固醇环境引起的发育异常。颗粒细胞(GCs)凋亡增加是PCOS患者排卵功能障碍和卵泡闭锁导致女性不育的重要原因,生物钟基因BMAL1CLOCKPER1PER2在多种细胞类型的凋亡中发挥关键作用 [45]。研究已知昼夜节律紊乱会增加肥胖和代谢疾病的发生风险 [46],代谢综合征和肥胖通常与生殖功能下降、生殖周期紊乱和促性腺激素分泌减弱有关,考虑到肥胖和代谢性疾病普遍存在多囊卵巢综合征的妇女,这是合理的假设昼夜节律紊乱可能是PCOS的一个重要的致病因素。并且研究发现在患有多囊卵巢综合征和肥胖的女孩中,昼夜节律失调与高血清游离睾酮水平和胰岛素敏感性降低有关 [47],高雄激素水平是PCOS的关键和初始特征,胰岛素抵抗是另一种常见表型。因此多囊卵巢综合征中类固醇激素分泌节律紊乱、雄激素过量和颗粒细胞凋亡及胰岛素抵抗,部分原因可能是由昼夜节律基因的改变介导的。

3. 总结与展望

多囊卵巢综合征是一种复杂的遗传和环境因素相互作用的结果。遗传因素包括卵巢多囊样改变、高雄激素血症、胰岛素抵抗和胰岛素分泌缺陷;环境因素包括产前雄激素暴露,而后天性肥胖是主要的产后因素,最新的肠道菌群炎症学说及生物节律研究也对PCOS机制研究提出了新的机遇和挑战。多种途径的参与和缺乏一个共同的线索证明了PCOS多因素的性质和异质性的特征,使其难以从根本上改善症状及对远期并发症的管理及治疗。虽然一些药物比如口服避孕药、二甲双胍和激素疗法等干预措施已被临床应用多年,然而,纠正生活方式以防止易感因素的暴露,似乎是多囊卵巢综合征的可持续治疗策略。对这种疾病的生理基础的进一步研究将有益于以最佳方式纠正雄激素水平、排卵和代谢稳态;生物节律研究及肠道菌群研究可能会为针对生殖病理生理的靶向治疗提供基础依据,特别是在接受辅助生殖技术超促排卵方案中使用调节生物钟的小分子药物,是极具发展潜力的新兴领域;未来在临床治疗PCOS患者时应考虑肠道微生物群落的差异,可以进行相关药物的研发,改善PCOS患者的远期并发症。所以通过对PCOS发病机制的深入研究,有利于探索、发掘单独或联合手段来控制多囊卵巢综合征的生育现状及减缓远期并发症的发生。

NOTES

*通讯作者。

参考文献

[1] Lizneva, D., Suturina, L., Walker, W., et al. (2016) Criteria, Prevalence, and Phenotypes of Polycystic Ovary Syndrome. Fertility and Sterility, 106, 6-15.
https://doi.org/10.1016/j.fertnstert.2016.05.003
[2] Fauser, B.C., Tarlatzis, B.C., Rebar, R.W., et al. (2012) Consensus on Women’s Health Aspects of Polycystic Ovary Syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and Sterility, 97, 28-38.
https://doi.org/10.1016/j.fertnstert.2011.09.024
[3] Mills, G., Badeghiesh, A., Suarthana, E., et al. (2020) Polycystic Ovary Syndrome as an Independent Risk Factor for Gestational Diabetes and Hypertensive Disorders of Pregnancy: A Population-Based Study on 9.1 Million Pregnancies. Human Reproduction, 35, 1666-1674.
https://doi.org/10.1093/humrep/deaa099
[4] Cooney, L.G. and Dokras, A. (2018) Beyond Fertility: Polycystic Ovary Syndrome and Long-Term Health. Fertility and Sterility, 110, 794-809.
https://doi.org/10.1016/j.fertnstert.2018.08.021
[5] (2004) Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related to Polycystic Ovary Syndrome. Fertility and Sterility, 81, 19-25.
https://doi.org/10.1016/j.fertnstert.2003.10.004
[6] Azziz, R. (2016) PCOS in 2015: New Insights into the Genetics of Polycystic Ovary Syndrome. Nature Reviews Endocrinology, 12, 74-75.
https://doi.org/10.1038/nrendo.2015.230
[7] Azziz, R. (2018) Polycystic Ovary Syndrome. Obstetrics & Gynecology, 132, 321-336.
https://doi.org/10.1097/AOG.0000000000002698
[8] Blank, S.K., McCartney, C.R. and Marshall, J.C. (2006) The Origins and Sequelae of Abnormal Neuroendocrine Function in Polycystic Ovary Syndrome. Human Reproduction Update, 12, 351-361.
https://doi.org/10.1093/humupd/dml017
[9] Stubbs, S.A., Hardy, K., Da, S.P., et al. (2005) Anti-Mullerian Hormone Protein Expression Is Reduced during the Initial Stages of Follicle Development in Human Polycystic Ovaries. The Journal of Clinical Endocrinology & Metabolism, 90, 5536-5543.
https://doi.org/10.1210/jc.2005-0907
[10] Fauser, B.C. and Van Heusden, A.M. (1997) Manipulation of Human Ovarian Function: Physiological Concepts and Clinical Consequences. Endocrine Reviews, 18, 71-106.
https://doi.org/10.1210/edrv.18.1.0290
[11] Hsieh, M., Thao, K. and Conti, M. (2011) Genetic Dissection of Epidermal Growth Factor Receptor Signaling during Luteinizing Hormone-Induced Oocyte Maturation. PLoS ONE, 6, e21574.
https://doi.org/10.1371/journal.pone.0021574
[12] Valkenburg, O., Uitterlinden, A.G., Piersma, D., et al. (2009) Genetic Polymorphisms of GnRH and Gonadotrophic Hormone Receptors Affect the Phenotype of Polycystic Ovary Syndrome. Human Reproduction, 24, 2014-2022.
https://doi.org/10.1093/humrep/dep113
[13] Rosenfield, R.L. and Ehrmann, D.A. (2016) The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocrine Reviews, 37, 467-520.
https://doi.org/10.1210/er.2015-1104
[14] Li, T., Mo, H., Chen, W., et al. (2017) Role of the PI3K-Akt Signaling Pathway in the Pathogenesis of Polycystic Ovary Syndrome. Reproductive Sciences, 24, 646-655.
https://doi.org/10.1177/1933719116667606
[15] Webber, L.J., Stubbs, S., Stark, J., et al. (2003) Formation and Early Development of Follicles in the Polycystic Ovary. The Lancet, 362, 1017-1021.
https://doi.org/10.1016/S0140-6736(03)14410-8
[16] Zeng, X., Xie, Y.J., Liu, Y.T., et al. (2020) Polycystic Ovarian Syndrome: Correlation between Hyperandrogenism, Insulin Resistance and Obesity. Clinica Chimica Acta, 502, 214-221.
https://doi.org/10.1016/j.cca.2019.11.003
[17] Kraemer, W.J., Ratamess, N.A., Hymer, W.C., et al. (2020) Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth with Exercise. Frontiers in Endocrinology (Lausanne), 11, 33.
https://doi.org/10.3389/fendo.2020.00033
[18] Dunaif, A. (1997) Insulin Resistance and the Polycystic Ovary Syndrome: Mechanism and Implications for Pathogenesis. Endocrine Reviews, 18, 774-800.
https://doi.org/10.1210/er.18.6.774
[19] Lan, C.W., Chen, M.J., Tai, K.Y., et al. (2015) Functional Microarray Analysis of Differentially Expressed Genes in Granulosa Cells from Women with Polycystic Ovary Syndrome Related to MAPK/ERK Signaling. Scientific Reports, 5, Article No. 14994.
https://doi.org/10.1038/srep14994
[20] Chen, M.J., Chou, C.H., Chen, S.U., et al. (2015) The Effect of Androgens on Ovarian Follicle Maturation: Dihydrotestosterone Suppress FSH-Stimulated Granulosa Cell Proliferation by Upregulating PPARgamma-Dependent PTEN Expression. Scientific Reports, 5, Article No. 18319.
https://doi.org/10.1038/srep18319
[21] Liu, H., Luo, L.L., Qian, Y.S., et al. (2009) FOXO3a Is Involved in the Apoptosis of Naked Oocytes and Oocytes of Primordial Follicles from Neonatal Rat Ovaries. Biochemical and Biophysical Research Communications, 381, 722-727.
https://doi.org/10.1016/j.bbrc.2009.02.138
[22] Salehi, R., Mazier, H.L., Nivet, A.L., et al. (2020) Ovarian Mitochondrial Dynamics and Cell Fate Regulation in an Androgen-Induced Rat Model of Polycystic Ovarian Syndrome. Scientific Reports, 10, Article No. 1021.
https://doi.org/10.1038/s41598-020-57672-w
[23] Jin, J., Ma, Y., Tong, X., et al. (2020) Metformin Inhibits Testosterone-Induced Endoplasmic Reticulum Stress in Ovarian Granulosa Cells via Inactivation of p38 MAPK. Human Reproduction, 35, 1145-1158.
https://doi.org/10.1093/humrep/deaa077
[24] Salley, K.E., Wickham, E.P., Cheang, K.I., et al. (2007) Glucose Intolerance in Polycystic Ovary Syndrome—A Position Statement of the Androgen Excess Society. The Journal of Clinical Endocrinology & Metabolism, 92, 4546-4556.
https://doi.org/10.1210/jc.2007-1549
[25] Cassar, S., Misso, M.L., Hopkins, W.G., et al. (2016) Insulin Resistance in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Euglycaemic-Hyperinsulinaemic Clamp Studies. Human Reproduction, 31, 2619-2631.
https://doi.org/10.1093/humrep/dew243
[26] Hansen, S.L., Svendsen, P.F., Jeppesen, J.F., et al. (2019) Molecular Mechanisms in Skeletal Muscle Underlying Insulin Resistance in Women Who Are Lean with Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 104, 1841-1854.
https://doi.org/10.1210/jc.2018-01771
[27] Diamanti-Kandarakis, E. and Dunaif, A. (2012) Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocrine Reviews, 33, 981-1030.
https://doi.org/10.1210/er.2011-1034
[28] Tosi, F., Dal Molin, F., Zamboni, F., et al. (2020) Serum Androgens Are Independent Predictors of Insulin Clearance but Not of Insulin Secretion in Women with PCOS. The Journal of Clinical Endocrinology & Metabolism, 105, dgaa095.
https://doi.org/10.1210/clinem/dgaa095
[29] Kelly, C.C., Lyall, H., Petrie, J.R., et al. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455.
https://doi.org/10.1210/jcem.86.6.7580
[30] Vgontzas, A.N., Trakada, G., Bixler, E.O., et al. (2006) Plasma Interleukin 6 Levels Are Elevated in Polycystic Ovary Syndrome Independently of Obesity or Sleep Apnea. Metabolism, 55, 1076-1082.
https://doi.org/10.1016/j.metabol.2006.04.002
[31] Gonzalez, F., Rote, N.S., Minium, J., et al. (2006) In Vitro Evidence That Hyperglycemia Stimulates Tumor Necrosis Factor-Alpha Release in Obese Women with Polycystic Ovary Syndrome. Journal of Endocrinology, 188, 521-529.
https://doi.org/10.1677/joe.1.06579
[32] Li, S., Zhao, L. and Wan, X.H. (2017) A Missense Variant rs4645843 in TNF-alpha Gene Is a Risk Factor of Polycystic Ovary Syndrome in the Uygur Population. The Tohoku Journal of Experimental Medicine, 243, 95-100.
https://doi.org/10.1620/tjem.243.95
[33] Liu, R., Zhang, C., Shi, Y., et al. (2017) Dysbiosis of Gut Microbiota Associated with Clinical Parameters in Polycystic Ovary Syndrome. Frontiers in Microbiology, 8, 324.
https://doi.org/10.3389/fmicb.2017.00324
[34] Egshatyan, L., Kashtanova, D., Popenko, A., et al. (2016) Gut Microbiota and Diet in Patients with Different Glucose Tolerance. Endocrine Connections, 5, 1-9.
https://doi.org/10.1530/EC-15-0094
[35] Cani, P.D., Amar, J., Iglesias, M.A., et al. (2007) Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 56, 1761-1772.
https://doi.org/10.2337/db06-1491
[36] Qi, X., Yun, C., Sun, L., et al. (2019) Gut Microbiota-Bile Acid-Interleukin-22 Axis Orchestrates Polycystic Ovary Syndrome. Nature Medicine, 25, 1225-1233.
https://doi.org/10.1038/s41591-019-0509-0
[37] Goodarzi, M.O., Dumesic, D.A., Chazenbalk, G., et al. (2011) Polycystic Ovary Syndrome: Etiology, Pathogenesis and Diagnosis. Nature Reviews Endocrinology, 7, 219-231.
https://doi.org/10.1038/nrendo.2010.217
[38] Mykhalchenko, K., Lizneva, D., Trofimova, T., et al. (2017) Genetics of Polycystic Ovary Syndrome. Expert Reviews Molecular Diagnostics, 17, 723-733.
https://doi.org/10.1080/14737159.2017.1340833
[39] Cui, L., Zhao, H., Zhang, B., et al. (2013) Genotype-Phenotype Correlations of PCOS Susceptibility SNPs Identified by GWAS in a Large Cohort of Han Chinese Women. Human Reproduction (Oxford), 28, 538-544.
https://doi.org/10.1093/humrep/des424
[40] Langley-Evans, S.C., Bellinger, L. and McMullen, S. (2005) Animal Models of Programming: Early Life Influences on Appetite and Feeding Behaviour. Maternal & Child Nutrition, 1, 142-148.
https://doi.org/10.1111/j.1740-8709.2005.00015.x
[41] Martin-Gronert, M.S. and Ozanne, S.E. (2005) Programming of Appetite and Type 2 Diabetes. Early Human Development, 81, 981-988.
https://doi.org/10.1016/j.earlhumdev.2005.10.006
[42] Homburg, R., Gudi, A., Shah, A., et al. (2017) A Novel Method to Demonstrate That Pregnant Women with Polycystic Ovary Syndrome Hyper-Expose Their Fetus to Androgens as a Possible Stepping Stone for the Developmental Theory of PCOS. A Pilot Study. Reproductive Biology and Endocrinology, 15, 61.
https://doi.org/10.1186/s12958-017-0282-1
[43] Raperport, C. and Homburg, R. (2019) The Source of Polycystic Ovarian Syndrome. Clinical Medicine Insights: Reproductive Health, 13, Article ID: 1186599915.
https://doi.org/10.1177/1179558119871467
[44] Cheng, M.Y., Bullock, C.M., Li, C., et al. (2002) Prokineticin 2 Transmits the Behavioural Circadian Rhythm of the Suprachiasmatic Nucleus. Nature, 417, 405-410.
https://doi.org/10.1038/417405a
[45] Wang, W., Yin, L., Bai, L., et al. (2017) Bmal1 Interference Impairs Hormone Synthesis and Promotes Apoptosis in Porcine Granulosa Cells. Theriogenology, 99, 63-68.
https://doi.org/10.1016/j.theriogenology.2017.05.010
[46] Sharma, A., Laurenti, M.C., Dalla, M.C., et al. (2017) Glucose Metabolism during Rotational Shift-Work in Healthcare Workers. Diabetologia, 60, 1483-1490.
https://doi.org/10.1007/s00125-017-4317-0
[47] Simon, S.L., McWhirter, L., Diniz, B.C., et al. (2019) Morning Circadian Misalignment Is Associated with Insulin Resistance in Girls with Obesity and Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 104, 3525-3534.
https://doi.org/10.1210/jc.2018-02385