计算生物学在杂交稻全生育期抗热性评价中的应用
The Application of Computational Biology in Evaluating Heat Resistance of Hybrid Rice Combinations in Whole Growth Stage
摘要: 采用玻璃温室增温法,以产量及其性状(穗长、一次枝梗数、二次枝梗数、总粒数、空粒数、穗数、千粒重、结实率、着粒密度和单株产量)的抗热响应、感热指数和几何均值为抗热性指标,对37个杂交稻组合进行了全生育期抗热性的评价。结果表明,不同杂交稻组合产量及其性状对全生育期高温的响应、感热指数和几何均值存在着显著基因型差异,对高温的响应和性状感热指数以二次枝梗数为最大和结实率为最小,性状几何均值以空粒数为最大和穗长为最小。相关分析发现,千粒重、结实率的性状响应和感热指数与抗热系数呈极显著相关,总粒数和着粒密度的几何均值与抗热系数呈极显著相关。以综合响应、性状热感指数和性状几何均值的综合抗热力为依据对杂交稻组合的抗热性进行聚类和判别分析发现,三种间接评价方法结果与抗旱系数直接评价结果并不完全一致,吻合度最好的是性状热感指数(70.27%),而综合性状居中(59.50%),性状几何均值最差(48.65%)。因此,产量性状感热指数的综合抗热力可作为杂交水稻抗热性间接评价的可靠方法和指标。
Abstract: With increasing temperature with glasshouse, the heat resistances and responses of 37 hybrid rice combinations to high temperature in whole stage were analyzed and evaluated with the heat susceptibility index, heat resistance coefficient and geometric mean in yields and their traits (panicle length, primary branches, secondary branches, total grains, no-filled grains, panicle number, 1000-grain-weight, seed-setting rate and grain density). The results showed that heat susceptibility indexes, heat resistance coefficient and geometric means in yields and their traits of 35 hybrid rice combinations to high temperature in whole stage were significantly genotypic differences. The maximum and minimum responses or heat susceptibility indexes of traits were respectively those of secondary branches and seed-setting rate. The maximum and minimum geometric means of traits were respectively those of no-filled grains and panicle length. Correlations of heat response or susceptibility indexes of 1000-grain-weight and seed-setting rate, geometric mean of total grains and grain density to heat resistance coefficient were significant at 0.01 level. The clustering and discrimination analyses of heat resistance in 37 hybrid rice combinations were conducted according to the comprehensive heat resistances of responses, heat susceptibility indexes and geometric means in yields and their traits, which indicated that the results had no fully common with the direct evaluation according to heat resistance coefficient, and the best consistency (70.27%) with heat susceptibility indexes, the next (59.50%) with geometric means and the worst (48.65%) with comprehensive responses. Therefore, comprehensive heat resistance of heat sus- ceptibility indexes in yields traits was the dependent method and index of indirect evaluation on rice heat resistance, the maximum effect with 1000-grain-weight and seed-setting rate.
文章引用:程建峰, 刘宜柏, 潘晓云, 赵金虎. 计算生物学在杂交稻全生育期抗热性评价中的应用[J]. 计算生物学, 2011, 1(2): 11-21. http://dx.doi.org/10.12677/hjcb.2011.12003

参考文献

[1] 张桂莲, 陈立云, 雷东阳. 水稻耐热性研究进展[J]. 杂交水稻, 2005, 20(1): 1-5.
[2] 王锋尖, 黄英金. 水稻高温胁迫及耐热性育种[J]. 中国农学通报, 2004, 20(3): 87-90.
[3] 熊振民, 蔡洪法. 中国水稻[M]. 北京: 中国农业科技出版社, 1992: 777-793.
[4] 曾汉来, 卢开阳, 贺道华等. 中籼杂交水稻组合结实性的高温适应性鉴定[J]. 华中农业大学学报, 2000, 19(1): 1-4.
[5] 李太贵, 沈波. 水稻品种开花期抗热性鉴定研究[J]. 作物品种资源, 1995, 1: 35-36.
[6] 杨文钰, 屠乃美. 作物栽培学各论[M]. 北京: 中国农业出版社, 2003: 41.
[7] 张龙步, 董克. 水稻田间试验方法与测定技术[M]. 沈阳: 辽宁科学技术出版社, 1993.
[8] 肖应辉, 余铁桥, 唐湘如. 大穗型水稻单株产量构成研究[J]. 湖南农业大学学报, 1998, 24(6): 428-431.
[9] 朱昌兰, 肖应辉, 王春明等. 水稻灌浆期耐热害的数量性状基因位点分析[J]. 中国水稻科学, 2005, 19(2): 117-121.
[10] 程建峰, 潘晓云, 刘宜柏. 水稻抗旱性鉴定的形态指标[J]. 生态学报, 25(11): 3117-3125.
[11] P. L. Brucker, R. C. Frohberg. Stress tolerance and adaptation in spring wheat. Crop Science, 1987, 27(1): 31-36.
[12] B. Ehdaie, J. G. Waines and A. E. Hall. Differential responses of landrace and improved spring wheat genotypes to stress environ- ments. Crop Science, 1988, 28(5): 838-842.
[13] 闫长生, 肖世和, 张秀英等. 冬小麦组合生育后期的耐热性评价[J]. 华北农学报, 2003, 18(3): 15-17.
[14] 黎裕. 作物抗旱鉴定方法与指标[J]. 干旱地区农业研究, 1999, 17(2): 79-85.
[15] 栗雨勤, 张文英, 王有增等. 作物抗旱性鉴定指标研究及进展[J]. 河北农业科学, 2004, 8(1): 58-61.
[16] 孙彩霞, 沈秀瑛. 作物抗旱性鉴定指标及数量分析方法的研究进展[J]. 中国农学通报, 2002, 18(1): 49-51.
[17] 兰巨生. 农作物综合抗旱性的评价[J]. 中国农学通报, 1994, 10(5): 34-35.
[18] F. X. Nil, X. X. Hua, X. D. Gao, et al. Studies on several phy- siological indexes of the drought resistance of sweet potato and its comprehensive evaluation. Acta Agronomic Sinica, 1996, 22(4): 392-398.
[19] 余建英, 何旭宏. 数学统计分析与SPSS应用[M]. 北京: 人民邮电出版社, 2003.
[20] 曹立勇, 赵建根, 占小登等. 水稻耐热性的QTL定位及耐热性与光合速率的相关性[J]. 中国水稻科学, 2003, 17(3): 223- 227.
[21] 宋洪元, 雷建军, 李成琼. 植物热胁迫反应及抗热性鉴定与评价[J]. 中国蔬莱, 1998, 23(1): 48-50.
[22] J. Levitt. Response of plants to environmental stresses. Maryland Heights: Academic Press, 1980: 1-211.
[23] 程建峰, 戴廷波, 曹卫星等. 稻种资源苗期氮素营养效率的分类\鉴定与评价[J]. 作物学报, 2005, 31(12): 1640-1647.
[24] 陈立松, 刘星辉. 植物抗热性鉴定指标的种类[J]. 干旱地区农业研究, 1997, 15(4): 72-77.
[25] 欧志英, 林桂珠, 彭长连. 超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应[J]. 中国水稻科学, 2005, 19(3): 249- 254.
[26] 朱雪梅, 柯永培, 邵继荣等. 高温胁迫对重穗型水稻品种叶片活性氧代谢的影响[J]. 种子, 2005, 24(3): 25-27.
[27] 钟连进, 程方民, 张国平等. 灌浆结实期不同温度下早籼稻米淀粉链长分布与结构特征差异分析[J]. 中国农业科学, 2005, 38(2): 272-27.
[28] 西山岩男, 赵贵彬, 凌天行. 水稻高温障碍的研究[J]. 国外农学——水稻, 1982, 5: 17-20.
[29] 森谷国男. 徐正进译. 水稻高温胁迫抗性遗传育种研究概况[J]. 杂交水稻, 1992, 1: 47-48.
[30] 杨纯明, L. J. Heilman. 谢国禄译. 短期高温对水稻生长发育和产量的影响[J]. 国外作物育种, 1994, 13(2): 4-5.
[31] 黄英金, 张宏玉, 郭进耀. 水稻耐高温逼熟的生理机制及育种应用研究初报[J]. 科学技术与工程, 2004, 8(4): 654-657.
[32] 况浩池, 文绍山, 刘国民. 泸恢17及其组合II优7号抽穗开花期耐热性研究[J]. 西南农业学报, 2002, 15(1): 106-108.