膳食蛋氨酸限制的抗衰老作用及机制研究进展
Research Progress of Anti-Aging Effects and Mechanisms of Dietary Methionine Restriction
DOI: 10.12677/HJBM.2021.112014, PDF, HTML, XML, 下载: 364  浏览: 875  科研立项经费支持
作者: 陈秋月, 连福治:杭州师范大学公共卫生学院,浙江 杭州
关键词: 蛋氨酸限制衰老衰老相关疾病Methionine Restriction Aging Age-Related Diseases
摘要: 蛋氨酸是人体必需氨基酸,参与蛋白质和体内多种具有重要功能的生物分子的合成。近年来在多种模式生物中发现限制膳食中蛋氨酸的摄入可延长寿命,促进代谢健康,延缓或改善多种慢性衰老相关疾病的发生发展。本文简要概括了近年来膳食蛋氨酸限制健康促进作用和相关机制的进展,以其对进一步研究和应用提供有益线索。
Abstract: Methionine is an essential amino acid for human that plays critical roles in the syntheses of many important biological molecules including protein. Recent studies have demonstrated that dietary methionine restriction can prolong lifespan, improve metabolic heath, prevent and postpone the development of some age-related chronic diseases in various model organisms. In this review, we summarized the recent progression of researches regarding the health promotion effects of dietary methionine restriction and the underlying mechanism, and expected to provide clues for further research and application.
文章引用:陈秋月, 连福治. 膳食蛋氨酸限制的抗衰老作用及机制研究进展[J]. 生物医学, 2021, 11(2): 106-112. https://doi.org/10.12677/HJBM.2021.112014

1. 引言

蛋氨酸(Methionine, Met)是维持哺乳动物生长发育的必需氨基酸。在细胞体内,除参与蛋白质合成外,蛋氨酸还是半胱氨酸、谷胱甘肽、牛磺酸、亚精胺和硫化氢等体内多种活性物质的前体。由于蛋氨酸不能通过机体自身合成,必需由膳食中获得,因此膳食蛋氨酸摄入水平对机体功能具有广泛的影响。近年研究发现,限制膳食蛋氨酸和半胱氨酸的摄入(蛋氨酸限制,methionine restriction,或含硫氨基酸限制,sulfate amino acid restriction)具有抗衰老作用,可延长多种模式生物的寿命,促进代谢健康,延缓或抑制多种衰老相关疾病的发生发展。

2. 膳食蛋氨酸限制的抗衰老作用

膳食蛋氨酸限制可延缓衰老过程最早由Orentreich小组于1993年报道,该研究发现在不限制食物摄入情况下,将饲料中半胱氨酸去除同时将蛋氨酸从对照组的0.86% (重量比)调整为0.17% (80%蛋氨酸限制),可使大鼠的寿命增加30% [1]。随后,膳食蛋氨酸限制延长寿命的作用在包括酵母、线虫、果蝇和小鼠等多种模式生物中均被证实 [2]。最近研究显示,在核纤维层蛋白A (Lamin A)代谢异常的引发的早衰小鼠(LmnaG609G/G609G和Zmpste24−/−)模型中,蛋氨酸限制也具有抗衰老作用,可使小鼠中位数寿命和最长寿命都延长20%以上 [3]。

3. 膳食蛋氨酸限制对代谢健康的促进作用

膳食蛋氨酸限制对机体代谢具有广泛的影响。喂食蛋氨酸限制饲料后动物显示食物摄入量和机体能量消耗同时增加,最终导致体重增长低于喂食对照饲料的动物。蛋氨酸限制使动物体内脂质减少,血液葡萄糖、甘油三酯、胰岛素、胰岛素样生长因子、瘦素和甲状腺素T4水平降低,而血液纤维母细胞生长因子21 (fibroblast growth factor 21, FGF21)、脂联素和甲状腺素T3水平升高;糖耐量实验显示蛋氨酸限制使动物胰岛素敏感性增加 [4]。

脂肪组织和肝脏是蛋氨酸限制促进能量消耗和增强胰岛素敏感性的主要作用器官。在肝脏组织中,蛋氨酸限制抑制脂肪酸合成酶(fatty acid synthase, FASN)、乙酰辅酶A羧化酶-1 (Acetyl-CoA carboxylase a, ACC-1)和硬脂酸辅酶A去饱和酶1 (Stearoyl-CoA desaturase, SCD1)等脂肪合成限速酶基因的表达,从而使肝脏脂质生成减少,脂肪输出降低 [5] [6]。而在脂肪组织中,蛋氨酸限制激活FASN、ACC-1和SCD1等基因表达,促进脂肪合成 [5] [6]。同时,蛋氨酸限制增加脂肪组织解偶联蛋白1 (uncoupling proteins 1, UCP1)、脂肪细胞脂肪酶(adipose triglyceride lipase, ATGL)以及其他脂肪酸氧化、三羧酸循环、呼吸链等能量代谢通路相关基因表达,促进脂肪的分解和利用 [5]。因此,在脂肪组织中,蛋氨酸限制同时促进脂肪合成和脂肪酸氧化,增强脂肪利用能力,从而抑制机体脂质沉积。

由于其促进代谢和脂肪分解利用的作用,膳食蛋氨酸限制不仅抑制动物正常的体重增长,还对肥胖和相关症状具有保护作用。研究显示,与喂食蛋氨酸含量为0.86% (w/w)的高脂饲料(脂肪占总能量60%)相比,喂食蛋氨酸含量为0.12% (w/w,85%蛋氨酸限制)的高脂饲料使C57BL小鼠的体重增加几乎停滞 [7];另有研究显示,C57BL小鼠喂食正常蛋氨酸含量的高脂饲料4周后,改为80%蛋氨酸限制的高脂饲料继续喂养8周,小鼠体重增长显著降低(P < 0.01) [8]。在ob−/−肥胖小鼠模型中,小鼠体重增长在喂食80%蛋氨酸限制饲料后第3周开始显著减缓,并持续低于喂食对照饲料的小鼠 [9]。另外有研究显示,在饲料中加入可降解蛋氨酸的重组蛋氨酸酶(recombinant methionase)以模拟膳食蛋氨酸限制,也可抑制高脂饲料引起的体重增长 [10]。除抑制体重增长外,蛋氨酸限制还可改善肥胖相关的其他症状,如抑制脂肪在肝脏过度聚集引发的脂肪肝 [9] [11],降低高脂引起的肝脏氧化应激 [11],增强糖耐受和促进胰岛素敏感性等 [7]。在NZO肥胖小鼠中,9周的蛋氨酸限制抑制高脂饲料诱发的高血糖,增强胰岛素敏感性,增加血浆脂联素水平,促进皮下脂肪组织能量代谢基因表达,但对NZO小鼠体内脂肪总量没有影响,提示蛋氨酸限制对II型糖尿病具有保护作用 [12]。

4. 膳食蛋氨酸限制对肿瘤的影响

研究显示蛋氨酸限制在多种模型中对肿瘤发生发展具有抑制作用。细胞研究中,降低培养基蛋氨酸浓度可抑制3-甲基胆蒽诱导的BALB/c 3T3细胞转化 [13];前列腺癌TRAMP小鼠模型中,喂食蛋氨酸限制饲料12周抑制前列腺上皮细胞增殖,降低血液胰岛素样生长因子1水平,同时蛋氨酸限制还使前列腺典型癌前病变—前列腺上皮内瘤(Prostatic Intraepithelial Neoplasia, PIN)发生率降低50%以上 [14],提示蛋氨酸限制可以预防肿瘤的发生。另一方面,在人源肿瘤异体移植小鼠模型中,蛋氨酸限制使生长于裸鼠的结肠癌肿瘤体积缩小,并肿瘤对化疗药物5-氟尿嘧啶和局部射线的敏感性增强 [15],提示蛋氨酸限制在肿瘤辅助治疗中具有一定的作用。

5. 膳食蛋氨酸限制对骨骼健康的影响

关于蛋氨酸限制对骨骼健康的影响目前尚无一致结论。85%蛋氨酸限制可抑制高脂饲料诱发的小鼠的体重增长,但同时导致小鼠骨量下降,血浆胶原降解的标志分子CTX-1 (1型胶原C端肽,C-terminal telopeptide of type 1 collagen)浓度上升 [7]。85%蛋氨酸限制还使血液中硬骨素(sclerostin)和I型胶原前体蛋白水平下降,骨皮质和骨小梁密度降低、骨量减少,骨髓脂肪聚集、抑制破骨细胞分化的重要转录因子RUNX2下降,骨骼硬度、最大负荷和总功能下降 [16]。上述研究提示蛋氨酸限制可能不利于骨骼健康。但在卵巢切除的大鼠中,80%蛋氨酸限制可抑制由于雌激素缺乏引起的体重上升和骨密度/骨量下降;校正体重影响后显示,蛋氨酸限制可使切除卵巢的大鼠股骨抗弯曲强度增加 [17],提示蛋氨酸限制可能有益于预防绝经后骨质疏松。不同的结论可能与所采用的实验模型以及蛋氨酸限制程度不同有关。

6. 膳食蛋氨酸限制与神经退行性疾病

目前尚无明确证据显示蛋氨酸限制可延缓或改善神经退行性疾病。流行病学研究显示,与典型西方膳食模式相比,蛋氨酸含量较低的地中海膳食、DASH膳食(dietary Approach to Stop Hypertension)、MIND膳食(Mediterranean-DASH diet Intervention for Neurodegenerative Delay)和素食等膳食模式可以延缓老年人认知功能衰退,降低阿尔茨海默病的风险 [18] [19]。动物实验中,饲料中额外添加蛋氨酸使小鼠脑组织中Tau磷酸化和Aβ聚合物水平增加,诱导脑组织炎症反应和氧化应激,导致小鼠记忆功能减退 [20];而限制蛋氨酸摄入可抑制脑组织中蛋白质 [21] [22] 和脂质氧化 [23],改善线粒体功能 [21] [22]。近期研究报道,在高脂饲料诱导的小鼠肥胖模型中,蛋氨酸限制可显著改善肥胖引起的学习和认知能力损伤 [24] [25],提示蛋氨酸限制对包括阿尔茨海默病在内的神经退行性病变可能有保护作用。然而,动物实验中限制膳食蛋氨酸摄入可伴随血液中同型半胱氨酸水平升高 [26],而同型半胱氨酸是阿尔茨海默病的重要危险因素,因此,尚需进一步研究探讨蛋氨酸限制对神经退行性疾病的影响。

7. 不同蛋氨酸限制程度的作用比较

目前大部分蛋氨酸限制研究采用的蛋氨酸浓度为0.17% (重量比),与蛋氨酸浓度为0.85%的对照饲料相比,限制程度为80%,仅有少数几项研究比较不同程度限制对实验动物的影响。在大鼠,40%蛋氨酸限制可降低线粒体自由基生成,增加呼吸链电子转运效率,保护肝脏、肾脏和脑组织中DNA和蛋白质氧化损伤 [22] [27]。而在比较不同蛋氨酸限制程度对小鼠代谢的影响发现,与80%限制相比,70%蛋氨酸限制可使小鼠出现相似程度的能量消耗增加,体脂降低,肝脏甘油三酯合成途径抑制,胰岛素敏感性增强;限制程度低于60%时,部分代谢影响消失;而限制程度达到85%时,小鼠出现更加显著的代谢改变,但同时由于蛋氨酸缺乏,小鼠无法维持生长,出现体重和瘦体重降低,提示蛋氨酸浓度过低可能对健康产生不良影响 [28]。

8. 蛋氨酸限制的作用机制研究

目前已证实蛋氨酸限制通过多种机制延缓衰老进程并调节机体代谢反应 [29],简要概括如下。1) 膳食蛋氨酸限制导致蛋氨酸供应不足,激活细胞整合应激反应(integrated stress response, ISR),机体蛋白质的合成降低,一系列应激反应相关基因被激活,其中包括FGF21、SCD1和UCP1等,从而增加机体能量消耗,促进糖脂代谢和体内脂质重新分布,增加胰岛素敏感性 [30]。2) 蛋氨酸限制使细胞内蛋氨酸直接代谢产物S-腺苷蛋氨酸(S-adenosyl methionine SAM)水平降低,SAM是细胞内各种甲基化反应的甲基供体,其含量下降影响DNA、蛋白质和的甲基化以及包括精胺等生物活性分子的合成 [31]。3) 蛋氨酸限制影响蛋氨酸代谢转硫通路(Transsulfuration pathway)的活性,进而影响细胞内抗氧化分子谷胱甘肽(glutathione, GSH)合成和硫化氢(H2S)代谢,从而影响机体抗氧化能力 [32]。4) 近来有研究报导蛋氨酸限制还通过影响肠道菌群分布而调节机体代谢 [33]。

9. 膳食蛋氨酸限制对人体的影响

尽管有大量动物研究证实蛋氨酸限制可以延缓衰老,延长寿命,预防或改善衰老相关疾病,有关膳食蛋氨酸限制对人体健康影响的研究仍然有限。不同食物来源的蛋白质中必需氨基酸含量存在很大差异。通常植物蛋白中必需氨基酸,包括蛋氨酸的含量明显低于动物蛋白,而非必需氨基酸含量则高于动物蛋白 [34]。许多流行病学研究显示基于植物性蛋白的膳食可延长寿命 [35],降低包括心血管疾病 [36] 和恶性肿瘤 [37] 等多种慢性疾病的风险,低蛋氨酸摄入可能是植物蛋白的健康保护作用的原因之一。

目前仅有少数临床试验观察膳食蛋氨酸限制对机体的影响,且均为短期试验。健康人接受蛋氨酸含量相当于普通膳食17%的蛋氨酸限制膳食3周后,血液中蛋氨酸及蛋氨酸相关代谢物浓度均发生明显改变,且变化与小鼠实验结果具有高度相关性,提示机体对蛋氨酸限制的反应在不同生物体内具有保守性 [15]。在一个小型临床试验中,26名患有代谢综合征的肥胖者接受蛋氨酸限制(蛋氨酸含量2 mg/kgBW/d)膳食16周后结果显示,与对照膳食(蛋氨酸含量33 mg/kgBW/d)相比,脂肪组织中脂肪酸氧化水平升高,肝内脂肪含量下降,但蛋氨酸限制对机体能量代谢率、体重及胰岛素敏感性没有显著影响 [38]。另一项研究中,20位肥胖妇女接受蛋氨酸含量不同的膳食7天后,结果显示膳食蛋氨酸限制增加血液FGF21水平,同时上调脂肪组织中脂肪合成基因的表达 [39]。总体来看,短期膳食蛋氨酸限制主要影响机体脂肪代谢,其对机体代谢及衰老的长期影响尚需进一步研究。

10. 小结

动物研究显示膳食蛋氨酸限制可延缓衰老,促进代谢健康,预防多种慢性疾病;虽然短期试验显示膳食蛋氨酸限制对机体代谢有一定的影响,但其对人体的长期健康的影响仍需进一步研究。一定程度的蛋氨酸限制可能对衰老和衰老相关疾病具有保护作用,但过低蛋氨酸摄入对机体蛋白质平衡、骨骼健康以及血液同型半胱氨酸的不良影响尤其值得注意。尽管如此,由于蛋氨酸限制可在不限制食物摄入情况下达到限食(dietary restriction)相近的效果,其在抗衰老,预防衰老相关代谢性疾病和其他慢性疾病中将具有更加广泛的应用前景。

基金项目

浙江省自然科学基金(LY18H260001)。

参考文献

[1] Orentreich, N., Matias, J.R., DeFelice, A., et al. (1993) Low Methionine Ingestion by Rats Extends Life Span. The Journal of Nutrition, 123, 269-274.
[2] Ables, G.P. and Johnson, J.E. (2017) Pleiotropic Responses to Methionine Restriction. Experimental Gerontology, 94, 83-88.
https://doi.org/10.1016/j.exger.2017.01.012
[3] Barcena, C., Quiros, P.M., Durand, S., et al. (2018) Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism. Cell Reports, 24, 2392-2403.
https://doi.org/10.1016/j.celrep.2018.07.089
[4] Orgeron, M.L., Stone, K.P., Wanders, D., et al. (2014) The Impact of Dietary Methionine Restriction on Biomarkers of Metabolic Health. In: Progress in Molecular Biology and Translational Science, Vol. 121, Elsevier Inc., Amsterdam, 351-376.
https://doi.org/10.1016/B978-0-12-800101-1.00011-9
[5] Perrone, C.E., Mattocks, D.A., Plummer, J.D., et al. (2012) Genomic and Metabolic Responses to Methionine-Restricted and Methionine-Restricted, Cysteine-Supplemented Diets in Fischer 344 Rat Inguinal Adipose Tissue, Liver and Quadriceps Muscle. Journal of Nutrigenetics and Nutrigenomics, 5, 132-157.
https://doi.org/10.1159/000339347
[6] Hasek, B.E., Boudreau, A., Shin, J., et al. (2013) Remodeling the Integration of Lipid Metabolism between Liver and Adipose Tissue by Dietary Methionine Restriction in Rats. Diabetes, 62, 3362-3372.
https://doi.org/10.2337/db13-0501
[7] Ables, G.P., Perrone, C.E., Orentreich, D., et al. (2012) Methionine-Restricted C57BL/6J Mice Are Resistant to Diet-Induced Obesity and Insulin Resistance but Have Low Bone Density. PLoS ONE, 7, e51357.
https://doi.org/10.1371/journal.pone.0051357
[8] Wang, L., Ren, B., Zhang, Q., et al. (2020) Methionine Restriction Alleviates High-Fat Diet-Induced Obesity: Involvement of Diurnal Metabolism of Lipids and Bile Acids. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1866, Article ID: 165908.
https://doi.org/10.1016/j.bbadis.2020.165908
[9] Malloy, V.L., Perrone, C.E., Mattocks, D.A., et al. (2013) Methionine Restriction Prevents the Progression of Hepatic Steatosis in Leptin-Deficient Obese Mice. Metabolism, 62, 1651-1661.
https://doi.org/10.1016/j.metabol.2013.06.012
[10] Tashiro, Y., Han, Q., Tan, Y., et al. (2020) Oral Recombinant Methioninase Prevents Obesity in Mice on a High-Fat Diet. In Vivo, 34, 489-94.
https://doi.org/10.21873/invivo.11799
[11] Yang, Y., Wang, Y., Sun, J., et al. (2019) Dietary Methionine Restriction Reduces Hepatic Steatosis and Oxidative Stress in High-Fat-Fed Mice by Promoting H2S Production. Food & Function, 10, 61-77.
https://doi.org/10.1039/C8FO01629A
[12] Castano-Martinez, T., Schumacher, F., Schumacher, S., et al. (2019) Methionine Restriction Prevents Onset of Type 2 Diabetes in NZO Mice. The FASEB Journal, 33, 7092-7102.
https://doi.org/10.1096/fj.201900150R
[13] Nicken, P., Empl, M.T., Gerhard, D., et al. (2016) Methionine Restriction Inhibits Chemically-Induced Malignant Transformation in the BALB/c 3T3 Cell Transformation Assay. Food and Chemical Toxicology, 95, 196-202.
https://doi.org/10.1016/j.fct.2016.07.014
[14] Sinha, R., Cooper, T.K., Rogers, C.J., et al. (2014) Dietary Methionine Restriction Inhibits Prostatic Intraepithelial Neoplasia in TRAMP Mice. The Prostate, 74, 1663-1673.
https://doi.org/10.1002/pros.22884
[15] Gao, X., Sanderson, S.M., Dai, Z., et al. (2019) Dietary Methionine Influences Therapy in Mouse Cancer Models and Alters Human Metabolism. Nature, 572, 397-401.
https://doi.org/10.1038/s41586-019-1437-3
[16] Plummer, J., Park, M., Perodin, F., et al. (2017) Methionine-Restricted Diet Increases miRNAs That Can Target RUNX2 Expression and Alters Bone Structure in Young Mice. Journal of Cellular Biochemistry, 118, 31-42.
https://doi.org/10.1002/jcb.25604
[17] Huang, T.H., Su, I.H., Lewis, J.L., et al. (2015) Effects of Methionine Restriction and Endurance Exercise on Bones of Ovariectomized Rats: A Study of Histomorphometry, Densitometry, and Biomechanical Properties. Journal of Applied Physiology, 119, 517-526.
https://doi.org/10.1152/japplphysiol.00395.2015
[18] Solfrizzi, V., Custodero, C., Lozupone, M., et al. (2017) Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. Journal of Alzheimer’s Disease, 59, 815-849.
https://doi.org/10.3233/JAD-170248
[19] Wu, J., Song, X., Chen, G.C., et al. (2019) Dietary Pattern in Midlife and Cognitive Impairment in Late Life: A Prospective Study in Chinese Adults. American Journal of Clinical Nutrition, 110, 912-920.
https://doi.org/10.1093/ajcn/nqz150
[20] Tapia-Rojas, C., Lindsay, C.B., Montecinos-Oliva, C., et al. (2015) Is L-Methionine a Trigger Factor for Alzheimer’s-Like Neurodegeneration?: Changes in Aβ Oligomers, Tau Phosphorylation, Synaptic Proteins, Wnt Signaling and Behavioral Impairment in Wild-Type Mice. Molecular Neurodegeneration, 10, 62.
[21] Naudi, A., Caro, P., Jove, M., et al. (2007) Methionine Restriction Decreases Endogenous Oxidative Molecular Damage and Increases Mitochondrial Biogenesis and Uncoupling Protein 4 in Rat Brain. Rejuvenation Research, 10, 473-484.
https://doi.org/10.1089/rej.2007.0538
[22] Caro, P., Gomez, J., Sanchez, I., et al. (2009) Forty Percent Methionine Restriction Decreases Mitochondrial Oxygen Radical Production and Leak at Complex I during Forward Electron Flow and Lowers Oxidative Damage to Proteins and Mitochondrial DNA in Rat Kidney and Brain Mitochondria. Rejuvenation Research, 12, 421-434.
https://doi.org/10.1089/rej.2009.0902
[23] Jove, M., Ayala, V., Ramirez-Nunez, O., et al. (2013) Specific Lipidome Signatures in Central Nervous System from Methionine-Restricted Mice. Journal of Proteome Research, 12, 2679-2689.
https://doi.org/10.1021/pr400064a
[24] Xu, Y., Yang, Y., Sun, J., et al. (2019) Dietary Methionine Restriction Ameliorates the Impairment of Learning and Memory Function Induced by Obesity in Mice. Food & Function, 10, 1411-1425.
https://doi.org/10.1039/C8FO01922C
[25] Wang, L., Ren, B., Hui, Y., et al. (2020) Methionine Restriction Regulates Cognitive Function in High-Fat Diet-Fed Mice: Roles of Diurnal Rhythms of SCFAs Producing- and Inflammation-Related Microbes. Molecular Nutrition and Food Research, 64, e2000190.
https://doi.org/10.1002/mnfr.202000190
[26] Tamanna, N., Mayengbam, S., House, J.D., et al. (2018) Methionine Restriction Leads to Hyperhomocysteinemia and Alters Hepatic H2S Production Capacity in Fischer-344 Rats. Mechanisms of Ageing and Development, 176, 9-18.
https://doi.org/10.1016/j.mad.2018.10.004
[27] Caro, P., Gomez, J., Sanchez, I., et al. (2009) Effect of 40% Restriction of Dietary Amino Acids (Except Methionine) on Mitochondrial Oxidative Stress and Biogenesis, AIF and SIRT1 in Rat Liver. Biogerontology, 10, 579-592.
https://doi.org/10.1007/s10522-008-9200-4
[28] Forney, L.A., Wanders, D., Stone, K.P., et al. (2017) Concentration-Dependent Linkage of Dietary Methionine Restriction to the Components of Its Metabolic Phenotype. Obesity (Silver Spring), 25, 730-738.
https://doi.org/10.1002/oby.21806
[29] Latimer, M.N., Freij, K.W., Cleveland, B.M., et al. (2018) Physiological and Molecular Mechanisms of Methionine Restriction. Frontiers in Endocrinology (Lausanne), 9, 217.
https://doi.org/10.3389/fendo.2018.00217
[30] Jonsson, W.O., Margolies, N.S. and Anthony, T.G. (2019) Dietary Sulfur Amino Acid Restriction and the Integrated Stress Response: Mechanistic Insights. Nutrients, 11, 1349.
https://doi.org/10.3390/nu11061349
[31] Dai, Z., Mentch, S.J., Gao, X., et al. (2018) Methionine Metabolism Influences Genomic Architecture and Gene Expression through H3K4me3 Peak Width. Nature Communications, 9, Article No. 1955.
https://doi.org/10.1038/s41467-018-04426-y
[32] Hine, C., Harputlugil, E., Zhang, Y., et al. (2015) Endogenous Hydrogen Sulfide Production Is Essential for Dietary Restriction Benefits. Cell, 160, 132-144.
https://doi.org/10.1016/j.cell.2014.11.048
[33] Yang, Y., Zhang, Y., Xu, Y., et al. (2019) Dietary Methionine Restriction Improves the Gut Microbiota and Reduces Intestinal Permeability and Inflammation in High-Fat-Fed Mice. Food & Function, 10, 5952-5968.
https://doi.org/10.1039/C9FO00766K
[34] Krajcovicova-Kudlackova, M., Babinska, K. and Valachovicova, M. (2005) Health Benefits and Risks of Plant Proteins. Bratislavske Lekarske Listy, 106, 231-234.
[35] Singh, P.N., Sabate, J. and Fraser, G.E. (2003) Does Low Meat Consumption Increase Life Expectancy in Humans. American Journal of Clinical Nutrition, 78, 526S-532S.
https://doi.org/10.1093/ajcn/78.3.526S
[36] Richter, C.K., Skulas-Ray, A.C., Champagne, C.M., et al. (2015) Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk. Advances in Nutrition, 6, 712-728.
https://doi.org/10.3945/an.115.009654
[37] Sanderson, S.M., Gao, X., Dai, Z., et al. (2019) Methionine Metabolism in Health and Cancer: A Nexus of Diet and Precision Medicine. Nature Reviews Cancer, 19, 625-637.
https://doi.org/10.1038/s41568-019-0187-8
[38] Plaisance, E.P., Greenway, F.L., Boudreau, A., et al. (2011) Dietary Methionine Restriction Increases Fat Oxidation in Obese Adults with Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, 96, E836-E840.
https://doi.org/10.1210/jc.2010-2493
[39] Olsen, T., Ovrebo, B., Haj-Yasein, N., et al. (2020) Effects of Dietary Methionine and Cysteine Restriction on Plasma Biomarkers, Serum Fibroblast Growth Factor 21, and Adipose Tissue Gene Expression in Women with Overweight or Obesity: A Double-Blind Randomized Controlled Pilot Study. Journal of Translational Medicine, 18, Article No. 122.
https://doi.org/10.1186/s12967-020-02288-x