体外膈肌起搏对呼吸机相关膈肌功能障碍的有效性研究
Effectiveness of External Diaphragm Pacing on Ventilator-Related Diaphragm Dysfunction
DOI: 10.12677/ACM.2021.114272, PDF, HTML, XML, 下载: 302  浏览: 530 
作者: 王晓红*, 单 亮, 张超凡, 刘 鑫, 李连弟:青岛大学附属医院重症医学科,山东 青岛;徐祥美:青岛大学附属医院肝病中心,山东 青岛
关键词: 呼吸机相关膈肌功能障碍膈神经刺激膈肌增厚率机械通气Ventilator-Related Diaphragm Dysfunction Phrenic Nerve Stimulation Diaphragm Thickening Rate Mechanical Ventilation
摘要: 目的:呼吸机相关膈肌功能障碍在临床应用呼吸机患者中普遍存在,与ICU患者的脱机拔管及病死率密切相关,本研究通过对全麻术后转入ICU继续应用呼吸机患者应用体外膈肌起搏器刺激膈神经来间断锻炼膈肌功能,通过超声、呼吸肌力学指标来评估对膈肌功能的影响。方法:研究对象为全麻术后转入ICU继续呼吸机治疗的患者,试验组间断应用体外膈肌起搏器,对照组不予膈神经刺激,在0 h、5 h、10 h、15 h、20 h分别在PSV模式下测量膈肌增厚率、最大吸气负压来评估膈肌功能。结果:t0时对照组和试验组的膈肌增厚率:(15.47 ± 0.67)%、(15.48 ± 0.44)%和最大吸气负压:(−4.29 ± 0.61) cm H2O、(−4.30 ± 0.52) cm H2O,t检验,差异无统计学意义;在5 h、10 h、15 h、20 h时试验组TFdi依次为:(17.59 ± 0.50)%、(22.98 ± 0.83)%、(24.95 ± 0.63)%、(28.28 ± 0.58)%;对照组为:(17.36 ± 0.64)%、(22.55 ± 0.92)%、(24.69 ± 0.94)%、(28.04 ± 0.61)%;两组间进行独立样本t检验,差异有明显的统计学意义(P < 0.05)。结论:在完全性控制通气数小时后膈肌收缩功能即明显下降。完全性控制通气术后患者早期进行体外膈肌起搏治疗能改善呼吸机相关膈肌功能障碍的进展。
Abstract: Ventilator-related diaphragmatic dysfunction is common in patients with clinical use of ventilators, and is closely related to the weaning and extubation of ICU patients and the mortality rate. This study used external diaphragm for patients who were transferred to ICU after general anesthesia and continued to use ventilators. The pacemaker stimulates the phrenic nerve to exercise the diaphragm function intermittently, and evaluates the impact on the diaphragm function through ultrasound and respiratory muscle mechanics. Method(s): The subjects of the study were patients who were transferred to ICU after general anesthesia to continue ventilator treatment. The test group was intermittently applied with external diaphragm pacemaker, and the control group was not given phrenic nerve stimulation. They were in PSV mode at 0 h, 5 h, 10 h, 15 h, and 20 h, respectively to measure the thickening rate of the diaphragm and the maximum negative inspiratory pressure to evaluate the function of the diaphragm. Result(s): Diaphragm thickening rate of control group and test group at t0 was: (15.47 ± 0.67)%, (15.48 ± 0.44)%, and maximum negative inspiratory pressure was: (−4.29 ± 0.61) cm H2O, (−4.30 ± 0.52) cm H2O, for independent samples t test between the two groups, the difference was not statistically significant; at 5 h, 10 h, 15 h, and 20 h, the TFdi of the test group was: (17.59 ± 0.50)%, (22.98 ± 0.83)%, (24.95 ± 0.63)%, (28.28 ± 0.58)%. The control group was: (17.36 ± 0.64)%, (22.55 ± 0.92)%, (24.69 ± 0.94)%, (28.04 ± 0.61)%; independent sample t test was performed between the two groups, and the difference was statistically significant (P < 0.05). Conclusion(s): After several hours of fully controlled ventilation, the contraction function of the diaphragm decreased significantly. Early external diaphragm pacing therapy in patients after complete controlled ventilation can improve the progression of ventilator-related diaphragm dysfunction.
文章引用:王晓红, 单亮, 徐祥美, 张超凡, 刘鑫, 李连弟. 体外膈肌起搏对呼吸机相关膈肌功能障碍的有效性研究[J]. 临床医学进展, 2021, 11(4): 1889-1894. https://doi.org/10.12677/ACM.2021.114272

1. 引言

膈肌功能障碍是一种尚未被广泛意识到的导致呼吸衰竭以及机械通气时间延长的原因,影响膈肌功能的因素很多,近年来,很多动物实验、临床研究表明,机械通气可作为一种独立因素对膈肌收缩功能产生影响,尤其是在完全控制通气下,膈肌受损、肌肉萎缩、功能障碍进展迅速。因此对机械通气患者早期干预至关重要。临床上目前只能尽早将完全控制通气降为控制/辅助机械通气并早期脱机拔管来减轻呼吸机相关膈肌功能障碍(Ventilator-induced diaphragmatic dysfunction, VIDD)发展。本研究就临床术后转入ICU继续机械通气患者通过体外膈肌起搏器间断刺激膈神经通过超声、呼吸肌力学等手段来评估对VIDD的影响。

2. 材料与方法

2.1. 材料

试验对象为在医院住院,所有患者术中均给与全麻+神经肌肉阻滞剂、有创气管插管 + 完全控制机械通气,术后转入ICU;本研究方案获得青岛大学附属医院伦理委员会同意批准,所有研究对象均签署知情同意书。体外膈肌起搏器(广州雪利昂生物科技有限公司,HLO-GJ13A);床旁超声机(日立,日本,HITACHI ALOKA NOBLUS)。

2.2. 方法

2.2.1. 试验对象

本试验采用前瞻性随机对照临床研究,纳入标准:1) 手术时间为4~8小时;2) 年龄大于18岁小于80岁;3) 中枢呼吸驱动功能正常;4) 胸锁乳突肌区域皮肤完整暴露。排除标准:1) 存在膈神经刺激禁忌症;2) 怀疑有单侧膈肌麻痹、萎缩,既往患有神经肌肉相关疾病或已知的膈肌解剖学异常;3) 既往存在心肺疾病、怀孕、腹水。该试验取得病人家属的知情同意。

2.2.2. 试验分组

采用随机数字表法分为试验组和对照组,常规镇静镇痛,RASS评分控制在−2到−3分,机械通气模式为V/C模式,试验组在0 h、4 h、8 h、12 h、16 h、20 h通过体外膈肌起搏器刺激双侧膈神经15分钟,对照组不予膈神经刺激。

2.2.3. 观察指标

1) 患者一般情况及可能影响膈肌功能的因素:年龄、性别、体重指数(体重、身高)、SPECH II评分、完全控制通气时间、心率(HR)、呼吸(RR)、平均动脉压(MAP)、体温(T)、氧合指数(PO2/FiO2)、血气分析(PH、PaO2、PaCO2、SpO2)、白蛋白、血红蛋白等。2) 在0 h、5 h、10 h、15 h、20 h分别PSV (参数设定为PEEP在0 cm H2O左右,PS的设定以保证VT在6~8 ml/kg为准)模式下测定TFdi、MIP,TFdi操作流程:两名经过专门超声操作规范化培训的重症医学科医师分别测量,在半卧位45˚PS模式下,PEEP在0 cm H2O左右,VT在6~8 ml/kg,至少3次自然呼吸,选择7~13 MHZ线阵传感器,在B超及M超模式下探测膈肌增厚比率(DIF = (吸气末厚度 − 呼气末厚度)/呼气末厚度 × 100%),膈肌点的位置采用超声定位法确定 [1]。3) 在患者进行SBT前测量膈肌增厚率,以及进行SBT时测定的浅快呼吸指数(呼吸频率/潮气量:f/VT),对膈肌增厚率和浅快呼吸指数进行相关性分析,进而评估膈肌增厚率对SBT的指导作用。

2.3. 统计学分析

SPSS 19.0软件,采用Kolmogorov-Smirnov test对计量资料进行正态性评估。呈正态性计量资料的分析以平均值 ± 标准偏差(SD)表示,两组间的差异性采用独立样本t检验,组内的差异性比较采用配对t检验;非呈正态性计量资料的分析以中位数(四分位间距(IQR)表示,两组间的差异性采用Mann-Whitney U检验,组内的差异性比较采用配对t检验。计数资料以率或例数表示,对计数资料的分析采用χ2检验。TFdi与浅快呼吸指数的相关性采用Pearson相关性分析。P < 0.05表示差异有统计学意义。

3. 结果

3.1. 两组患者一般情况及可能影响膈肌功能的因素比较差异无统计学意义

对照组和试验组的膈肌增厚率

t0时(15.47 ± 0.67)%、(15.48 ± 0.44)%和最大吸气负压:(−4.29 ± 0.61) cm H2O、(−4.30 ± 0.52) cm H2O,两组间进行独立样本t检验,差异无统计学意义。而在膈神经刺激后试验组各个阶段所测得的TFdi依次为:(17.59 ± 0.50)%、(22.98 ± 0.83)%、(24.95 ± 0.63)%、(28.28 ± 0.58)%;对照组各个阶段所测得的TFdi依次为:(17.36 ± 0.64)%、(22.55 ± 0.92)%、(24.69 ± 0.94)%、(28.04 ± 0.61)%;两组间进行独立样本t检验,试验组在膈神经刺激后的各个阶段所测得的膈肌增厚率均高于对照组,差异有明显的统计学意义。在膈神经刺激后试验组各个阶段所测得的MIP依次为:(−6.54 ± 0.32) cm H2O、(−7.11 ± 0.41) cm H2O、(−14.47 ± 0.47) cm H2O、(−26.01 ± 0.44) cm H2O;对照组:(−6.38 ± 0.62) cm H2O、(−6.89 ± 0.71) cm H2O、(−14.20 ± 0.84) cm H2O、(−25.50 ± 1.43) cm H2O;两组间进行独立样本t检验,试验组在膈神经刺激后的各个阶段所测得的最大吸气负压均高于对照组,差异有明显的统计学意义(P < 0.05) (详见表1)。

Table 1. Comparison of DIF and MIP values between test group and control group at t20

表1. t20时试验组和对照组DIF、MIP值比较

备注:资料以均数 ± 标准差(x ± s)表示,统计分析方法采用独立样本t检验。

3.2. 从两组患者的SBT前测得的膈肌增厚率与SBT时计算的浅快呼吸指数

脱机过程中测得的浅快呼吸指数与脱机前测得的膈肌增厚率两者之间的Pearson相关性系数为1,详见表2表3,说明两者具有明显的相关性。

Table 2. Descriptive statistics

表2. 描述性统计量

Table 3. Relevance

表3. 相关性

**.在.01水平(双侧)上显著相关。

4. 讨论

膈肌是最主要的呼吸肌,正常人在平静呼吸时,膈肌收缩承载着70%的潮气量,正常生理学上一次自主呼吸为膈肌主动收缩、膈肌朝向腹部下移进而产生胸腔内负压使得肺泡张开完成一次吸气过程,而呼吸机控制通气模式下,为呼吸机向肺泡产生一个正压通气使得肺泡张开进而膈肌被动下移。呼吸机相关膈肌功能障碍(Ventilator-induced diaphragmatic dysfunction, VIDD)最早由Vassilakopoulos和Petrof提出 [1]。有相关研究表明,临床中可通过测定的TFdi < 29%定义为膈肌功能障碍 [2] [3]。近年来大家逐渐意识到机械通气可作为独立的因素对膈肌产生损伤,机械通气过程中可能发生4种不同形式的肌损伤:因过度辅助引起的萎缩,因辅助不足引起的过度负荷,呼气过程中膈肌收缩引起的偏心性肌外伤或由于高水平的呼气末正压(PEEP)而引起的不同步和纵向萎缩 [4] [5] [6] [7]。相关研究在脑死亡器官捐献者的尸体解剖中,在18~69小时机械通气后膈肌肌纤维横截面积明显下降超过50% [8]。因此早期干预至关重要。究其原因主要是刺激膈肌的神经传导受抑制和膈肌去负荷、肌肉功能本身受损,而膈肌主要受膈神经的支配,最新证据表明,在机械通气过程中保持适当的膈肌活动有可能防止膈肌受伤 [9]。一些临床研究表明,心胸外科手术间歇性膈肌刺激可对膈肌力的产生和线粒体功能发挥作用 [10]。体外膈肌起搏器作为一种简单、无创、便携式的有效刺激膈神经的仪器,通过体表电极片对膈神经进行低频脉冲电刺激,使膈肌有规律的收缩、舒张,过去常被用来改善COPD、慢性呼吸衰竭患者的康复辅助治疗和中枢性呼吸睡眠暂停的有效治疗手段。围手术期全麻状态下的完全性控制通气不可避免的会导致膈肌去负荷、废用,进而使得膈肌收缩功能障碍。通过体外膈肌起搏器刺激膈神经能减轻VIDD的进展。在试验过程中,在某些机械通气患者中,对照组膈肌厚度随时间增加的观察结果可能反映了机械通气导致的膈肌肌肉水肿和损伤。

膈肌功能障碍在危重病人中发病率很高,危重患者不能转出ICU的众多因素中脱机困难占据了很大的比例,尤其是脊髓损伤导致长期依赖呼吸机的患者体现明显,“小潮气量肺保护性通气”很早之前就被提出并广泛应用于临床ARDS患者,而膈肌保护性通气策略近年来逐渐映入大家眼帘 [11]。本研究本文针对的是无明显基础呼吸疾病的术后患者,一般情况下在术后转入ICU后均能短期实现脱机拔管,故体外膈肌起搏器的适应症不太明显;而本文的研究目的旨在通过对无明显基础肺部疾患的患者的研究结果运用到有基础呼吸系统疾病(COPD、肺纤维化、严重肺部感染等)的患者或呼吸机依赖的患者中去,以改善脱机困难患者的膈肌功能、减短ICU住院时间。

通过膈肌增厚率和浅快呼吸指数的相关性研究,本文可以发现两者之间存在明显的相关性,这为在评估进行自主呼吸试验、脱机拔管指征提供了一个操作简单无创、可重复性高的指标,有相关研究表明,在膈肌增厚率大于30%~36%对指导脱机有较好的评估作用,本研究亦发现,脱机成功的患者其膈肌增厚率在(32.82 ± 2.04)%,这为以后临床进行脱机患者前的评估又增加了一条有较好可信度的评估指标。

5. 结论

综上所述:在完全性控制通气数小时后膈肌收缩功能即明显下降。完全性控制通气术后患者早期进行体外膈肌起搏治疗能改善呼吸机相关膈肌功能障碍的进展。同时超声测定膈肌增厚率对机械通气患者的自主呼吸试验、脱机拔管具有良好的指导作用。

NOTES

*通讯作者。

参考文献

[1] Vassilakopoulos, T. and Petrof, B.J. (2004) Ventilator-Induced Diaphragmatic Dysfunction. American Journal of Respiratory and Critical Care Medicine, 169, 336-341.
https://doi.org/10.1164/rccm.200304-489CP
[2] Demoule, A., Jung, B., Prodanovic, H., et al. (2013) Diaphragm Dysfunction on Admission to the Intensive Care Unit. Prevalence, Risk Factors, and Prognostic Impact: A Prospective Study. American Journal of Respiratory and Critical Care Medicine, 188, 213-219.
https://doi.org/10.1164/rccm.201209-1668OC
[3] Radell, P., Remahl, S., Nichols, D. and Eriksson, L. (2002) Effects of Prolonged Mechanical Ventilation and Inactivity on Piglet Diaphragm Function. Intensive Care Medicine, 28, 358-364.
https://doi.org/10.1007/s00134-002-1207-8
[4] Goligher, E.C., Brochard, L.J., Reid, W.D., Fan, E., Saarela, O., Slutsky, A.S., et al. (2019) Diaphragmatic Myotrauma: A Mediator of Prolonged Ventilationand Poor Patient Outcomes in Acute Respiratory Failure. The Lancet Respiratory Medicine, 7, 90-98.
https://doi.org/10.1016/S2213-2600(18)30366-7
[5] Telias, I., Brochard, L. and Goligher, E.C. (2018) Is My Patient’s Respiratory Drive (Too) High? Intensive Care Medicine, 44, 1936-1939.
https://doi.org/10.1007/s00134-018-5091-2
[6] Pellegrini, M., Hedenstierna, G., Roneus, A., Segelsjö, M., Larsson, A. and Perchiazzi, G. (2016) The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. American Journal of Respiratory and Critical Care Medicine, 195, 1608.
https://doi.org/10.1164/rccm.201605-0992OC
[7] Lindqvist, J., van den Berg, M., van der Pijl, R., Hooijman, P.E., Beishuizen, A., Elshof, J., et al. (2018) Positive End-Expiratory Pressure Ventilation Induceslongitudinal Atrophy in Diaphragm Fibers. American Journal of Respiratory and Critical Care Medicine, 198, 472.
https://doi.org/10.1164/rccm.201709-1917OC
[8] Hufeland, C.W. (1783) De usu vis electricae in asphyxia experimentis illustrata. Göettingae.
[9] Goligher, E.C., Dres, M., Fan, E., Rubenfeld, G.D., Scales, D.C., Herridge, M.S., et al. (2018) Mechanical Ventilation-Induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. American Journal of Respiratory and Critical Care Medicine, 197, 204-213.
https://doi.org/10.1164/rccm.201703-0536OC
[10] Martin, A.D., Joseph, A.-M., Beaver, T.M., Smith, B.K., Martin, T.D., Berg, K., et al. (2013) Effect of Intermittent Phrenic Nerve Stimulation during Cardiothoracic Surgery on Mitochondrial Respiration in the Human Diaphragm. Critical Care Medicine, 42, e152.
https://doi.org/10.1097/CCM.0b013e3182a63fdf
[11] Schepens, T. and Goligher, E.C. (2019) Lung- and Diaphragm-Protective Ventilation in Acute Respiratory Distress Syndrome: Rationale and Challenges. Anesthesiology, 130, 620.
https://doi.org/10.1097/ALN.0000000000002605