理论数学  >> Vol. 1 No. 1 (April 2011)

Whitham-Broer-Kaup-Like方程组的精确解和守恒律
Exact solutions and conservation laws of Whi-tham-Broer-Kaup-Like equations

DOI: 10.12677/pm.2011.11003, PDF, 下载: 2,885  浏览: 9,902  国家自然科学基金支持

作者: 于金倩, 刘希强, 王婷婷:聊城大学数学科学学院,聊城

关键词: Whitham-Broer-Kaup-Like方程组CK直接方法对称精确解守恒律
WBKL Equations; CK’s Direct Method; Symmetry; Exact Solutions; Conservation Laws

摘要: 通过利用修正CK直接方法建立了Whitham-Broer-Kaup-Like(WBKL)方程组的对称群理论。利用对称群理论和WBKL方程组的旧解得到了它们的新的精确解。基于上述理论和WBKL方程组的共轭方程组的理论,得到了WBKL方程组的守恒律。
Abstract: By using the modified CK’s direct method, we derive the symmetry group theorem of WBKL equations. The new exact solutions of WBKL equations are obtained by applied the symmetry group theorem and the old solutions. Based on the above theorem and the adjoint equations, we derive the conservation laws of WBKL equations.

文章引用: 于金倩, 刘希强, 王婷婷. Whitham-Broer-Kaup-Like方程组的精确解和守恒律[J]. 理论数学, 2011, 1(1): 12-14. http://dx.doi.org/10.12677/pm.2011.11003

参考文献

[1] Y. B. Zhou, C. Li. Application of modified -expansion method to traveling wave solutions for Whitham-Broer-Kaup- Like equations. Commun. Theor. Phys., 2009, 51(1): 664-670.
[2] Y. Chen, Q. Wang. Multiple Riccati equations rational expansion method and complextion solutions of the Whitham-Broer-Kaup equation. Phys. Lett. A, 2005, 347(4-6): 215-227.
[3] F. D. Xie, Z. Y. Yan, H. Q. Zhang. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations.
[4] Phys. Lett. A, 2001, 285(1-2): 76-80.
[5] Z. Y. Yan, H. Q. Zhang. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer- Kaup equation in shallow water. Phys. Lett. A, 2001, 285(5-6): 355-362.
[6] Y. Chen, Q. Wang. Multiple Riccati equations rational expansion method and complexion solutions of the Whitham- Broer-Kaup equation. Phys. Lett. A, 2005, 347(4-6): 215-227.
[7] X. Y. Jiao, H. Q. Zhang. An extended method and its application to Whitham-Broer-Kaup equation and two-dimensional perturbed KdV equation. Appl. Math. Comput., 2006, 172(1): 664-677.
[8] S. M. El-Sayed, D. an Kaya. Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations. Appl. Math. Comput., 2005, 167(2): 1339-1349.
[9] E. Yomba. The extended Fan’s sub-equation method and its application to KdV-MKdV, BKK and variant Boussinesq equations. Phys. Lett. A, 2005, 336(6): 463-476.
[10] Z. Y. Yan, H. Q. Zhang. New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics. Phys. Phys. Lett. A, 1999, 252(6): 291-296.
[11] Y. Chen, Q. Wang. A new general algebraic method with symbolic computation to construct new travelling wave solution for the (1 + 1)-dimensional dispersive long wave equation. Appl. Math. Comput., 2005, 168(2): 1189-1204.
[12] X. D. Zheng, Y. Chen, H. Q. Zhang. Generalized extended tanh-function method and its application to (1 + 1)-dimensional dispersive long wave equation. Phys. Lett. A, 2003, 311(2-3): 145-157.
[13] S. M. Guo, Y. B. Zhou. The ex-tended expansion method and its applications to the Whi-tham-Broer-Kaup equation and coupled Hirota-Satsuma KdV equation. Appl. Math. Comput., 2010, 215(9): 3214-3221.
[14] N. H. Ibragimov. A new conservation theorem. J. Math. Anal. Appl., 2007, 333(1): 311-328.