云母纳米片与硅基底之间吸附能的鼓泡测量
Adhesion Energy between Mica Nanolayers and Silicon Substrate Determined by a Blister Testing
DOI: 10.12677/MS.2021.115059, PDF, HTML, XML, 下载: 356  浏览: 1,496  国家自然科学基金支持
作者: 王 炜, 甄 兴, 高阳阳, 侯丽珍*:湖南师范大学物理与电子科学学院,低微量子结构与调控教育部重点实验室,湖南 长沙
关键词: 云母纳米片吸附能鼓泡法Mica Nanolayer Adhesion Energy Si Blister Test
摘要: 云母纳米片(MNL)能显著改善硅(Si)微纳电子器件的电子输运性能,是一种非常有潜力的介电材料。MNL与接触的Si基底之间的界面吸附行为对于所构建的微纳电子器件的性能和力学稳定性极为关键,但是测试手段和技术上的困难导致我们对这类界面吸附行为的认知非常有限。本文采用了颗粒支撑的鼓泡方法测量了MNL与Si基底之间的界面吸附能,其测量结果为42.9 ± 8.9 mJ/m2,接近范德华吸附的理论估算值~30 mJ/m2。同时,基于对比测试结果,本文还对颗粒支撑的鼓泡测试法在具体测量中所涉及到的力学模型的适用条件进行了讨论。这对提高鼓泡法在薄膜与基底之间界面吸附能的测量可靠性和准确性方面具有非常重要的指导和参考意义。
Abstract: Mica nanolayers (MNL) are a potential dielectric material, which can significantly improve the electron transport properties of Silicon (Si) micro-nano electronic devices. The adhesion energy between MNL and the underlying Si substrate plays a critical role on the operation and stability of the electronic devices, but is not well understood due to the challenges in the experimental testing and technical difficulties. In this study, the adhesion energy between MNL and Si substrate is de-termined by a particle-loaded blister test. The measured value of 42.9 ± 8.9 mJ/m2 is close to the theoretical value of ~30 mJ/m2 predicted by van de Waals theory. The validity of the mechanical models related to the particle-loaded blister test was discussed, based on the comparative test results in our measurement. This will be of great benefit to improving the accuracy and reliability of the particle-loaded blister test for determining adhesion energy between thin films and substrates.
文章引用:王炜, 甄兴, 高阳阳, 侯丽珍. 云母纳米片与硅基底之间吸附能的鼓泡测量[J]. 材料科学, 2021, 11(5): 511-519. https://doi.org/10.12677/MS.2021.115059

1. 引言

二维材料通常具有优异的光电和机械性能,因此在柔性电子器件和设备中具有广泛的应用前景。二维材料的层间吸附力,或是与基底之间的吸附力会显著影响到其制备、转移、组装和功能化器件的性能 [1] - [10]。例如,二维材料大面积转移和功能化器件组装时,是通过它们与基底之间的相互吸附作用而实现的。尤其是,基于二维材料的柔性电子器件在使用中,由于反复弯曲折叠或是环境温度、湿度等的变化使得二维材料可能与界面相脱离,从而导致其性能不稳定或者完全失效。因此,为确保设备的可靠性,测量二维材料与基底之间的吸附就显得尤为重要 [2] [3] [4] [5] [6]。云母纳米片(MNL)是一种二维介电薄膜,其结构与石墨烯类似,可以通过透明胶带撕脱法来机械剥离大块的云母片而制备 [11]。MNL具有较高的介电常数与极为平整的表面,以及出色的化学和热稳定性 [11]。这些特性使MNL成为近乎完美的介电材料,有望显著改善基于硅(Si)的微电子器件的电子传输性能。有研究表明,将MNL用作Si衬底上的电介质层,可使石墨烯场效应晶体管(FET)的载流子迁移率增加一倍,并将其跨导提高数倍 [12];同时,MNL电介质层也能通过抑制栅极泄漏电流来提高碳纳米管FET的栅极控制能力 [13]。此外,MNL还能代替聚合物作为柔性电子设备中的电介质 [14],因为它不仅改善了电子传输性能(由于其较高的介电常数),而且因为其杨氏模量与Si基底相近还能降低因界面弹性失配所带来的影响 [15]。

在大多数电子器件中,MNL是通过物理吸附的方式贴附在Si基底上;因此MNL与Si的吸附力就可能会显著影响到其器件的性能。例如在MNL与Si吸附的柔性电子器件,在使用中,其反复弯曲使得MNL可能与界面相脱离 [16]。这种情况下,MNL和Si衬底之间的粘附力在很大程度上就决定了电子设备的可靠性和寿命 [12] [13] [14]。目前,原子力显微镜(AFM)是测量纳米材料表面粘附能最常用的工具 [17] [18]。但是只能直接测量目标材料与AFM尖端的吸附力,所以AFM无法用来直接测量出样品与Si基底的吸附能。高压气泡法是测量二维材料与光滑基底间吸附能的另一种常见方法 [19];然而,这种方法的样品制备过程比较复杂且时间较长,因此测试样品很容易在制样过程中受到污染,导致测量结果不准确。基于扫描电子显微镜(SEM)的原位纳米操纵技术是最近发展起来的测量纳米粘附力的新方法 [20] [21] [22]。这种方法直观而高效,但是制样和测量过程的电子束辐照可能会影响到测量结果,且目前还没有任何理论预测和实验测量方法可以定量衡量这种潜在影响 [23]。纳米颗粒辅助的鼓泡法,是通过将纳米膜(片)覆盖在基底表面的纳米颗粒上,形成由纳米颗粒支撑的鼓泡,并通过鼓泡的形变来测量超薄膜与基底之间黏附能的一种新方法 [24] [25] [26] [27] [28]。这种测量方法虽然力学模型比较复杂,但是因为实验过程相对简单而高效,仍不失为一种快速评估纳米膜与基底之间界面吸附能的便捷途径。此外,Yu等最近建立起来的基于光学显微镜(OM)操控技术的悬拱桥法,因为能准确测量纳米膜与基底之间的界面吸附能及其温度和湿度依赖关系,是一种非常有潜力的新测量方法 [29] [30] [31]。但这种新方法的测试过程相对比较复杂,且非常耗时。因此,建立一种简易的测试方法,来快速测量MNL与基底之间的界面吸附能是非常有必要的。

本文中,我们将通过纳米颗粒辅助的鼓泡法,借助OM和AFM对鼓泡的干涉图样、几何轮廓和膜厚进行观测和测量,计算MNL与Si基底之间的界面吸附能,并分析和讨论其测量结果。

2. 实验方法与模型

2.1. 实验方法及步骤

将微量直径为0.1~2 μm的SiO2的球形胶体球(纯度 > 99.9%)放于无水乙醇(95%)中,采用超声波分散30 min;把含有SiO2颗粒的乙醇溶液滴在单晶(100) Si片,自然风干后再采用等离子机清洗表面的污渍约20~30 min。MNL是通过机械剥离的方法制备,并采用干转移法覆盖在Si片表面的。具体过程如下:(1) 将黏性相对较低、表面平整光洁、透光性好的日本日东NITTO (448S)胶带,贴附在云母基底表面,并尽可能排除胶带与云母片之间的气泡。通常将胶带剪5~6小片,然后依次贴附在云母片上,因为较厚的胶带在剥离云母片时产生的形变量更小,更易剥离出完整度高的大面积MNL。(2) 将胶带从云母基底撕开,在胶带上获得MNL;然后通过胶带对折和撕离方式,来调整胶带表面上的MNL的厚度。(3) 将粘附有MNL的胶带贴附在带有SiO2颗粒的Si片上并尽可能去除中间的气泡,撕去胶带后在Si片上获得由SiO2颗粒顶起来鼓泡。鼓泡在制备过程中实验室温度为15℃,相对湿度约60%。(4) 通过OM (Objectives: Mitutoyo M Plan APO 500×)观察鼓泡的形貌和位置,通过AFM (Oxford Instruments Asylum Research, California, USA)对鼓泡的形貌和对应的MNL厚度进行表征。

2.2. 力学模型

图1为通过颗粒载荷鼓泡方法来测试MNL和Si基底之间粘附能的模型图。其中鼓泡的高度为W,鼓泡半径为R,MNL的厚度为t。如果MNL足够薄,即满足条件: W t R t ,则可把MNL视为刚度可以忽略的挠性膜,此时鼓泡的形成主要来源于MNL的拉伸。同时,因为MNL与基底之间的粘附力主要来源于相对较弱的范德华作用力,因此,可以将Si基底和颗粒视为刚体,忽略它们在相互作用中的形变。在这种情况下,MNL和Si基底之间的粘附能可以通过下式来估算 [28]:

γ f i l = 1 16 E t ( W R ) 4 (1)

其中E = 190 GPa为MNL的杨氏模量 [11]。

如果MNL的比较厚,且颗粒的直径比较小,则可以把MNL视为薄板,把鼓泡视为纯弯曲形变的结果。在这种情况下,MNL和Si基底之间的粘附能可以通过下式来估算 [32] [33]

γ p l a = 2 E t 3 W 2 3 ( 1 v 2 ) R 4 (2)

其中 v = 0.25 为MNL的泊松比 [30]。另一方面,如果颗粒的粒径比较大,则鼓膜中会出现较大的剪切和拉伸应力,如果再采用公式(2)来计算黏附能,将导致计算结果偏低。因此在这种情况下,需要对其进行进一步修正 [34] [35]。

Figure 1. Sketch for the particle-loaded blister test for MNL on Sisubstrate

图1. Si基底表面MNL的颗粒载荷鼓泡测试的模型图

3. 结果与分析

图2(a)为MNL覆盖在直径较小的纳米颗粒上所形成鼓泡的OM照片,显示出鼓泡与Si基底之间呈现出的几乎完美的圆环形界面,而颗粒则位于圆环的圆心处。此外,MNL与基底接触部分具有非常均一的颜色,表明MNL具有均一的厚度,且与基底之间没有气泡或其他的污染物。AFM分析显示,NML的厚度 t = 176 nm,其表面非常平整,没有出现层状状台阶,如图2(b)。图2(c)为鼓泡的整体3维(3D)轮廓和对应的2维(2D)剖面图。鼓泡整体上显现出扁平的形貌,其高度 W = 233 nm,半径 R = 5459 nm。采用板理论来计算对应的粘附能,将测得的W,t和R值代入方程式(2)可得, γ p l a = 45.0 mJ/m2。另一方面,因为MNL鼓泡的高度和厚度的值比较接近, W / t = 1.3 ,如果再采用膜理论来计算,将会严重低估粘附能。作为对比,将上面测定的W,t和R值代入方程式(1)可得, γ f i l = 6.9 mJ/m2,远小于按照板理论得到的值。在实验中,我们测量了另外两个膜厚分别为185和227 nm, W / t 值分别为1.2和1.3的鼓泡,采用方程式(2)得到对应的 γ p l a 分别为50.6和33.0 mJ/m2。类似地,如果按照膜理论来计算,发现得到的 γ f i l 值为6.7和5.0 mJ/m2,相较而言要低很多(表1)。

(a) (b) (c)

Figure 2. (a) OM image of the particle-loaded blisters. The inset shows a very small blister; (b) 3D profile and 2D cross-section profile of the edge of the MNL; (c) 3D profile and 2D cross-section profile of the relatively large blister

图2. (a) 颗粒支撑起来的鼓泡的光学照片。插图为通过很小的颗粒支撑起来的小鼓泡;(b) MNL边缘的3D AFM图片和对应的高度曲线;(c) 相对较大的鼓泡的3D AFM图片和对应的2D剖面曲线

Table 1. The morphological parameters and interfacial adhesion energies of blisters

表1. 鼓泡形貌参数及对应的界面粘附能

当颗粒的粒径较大的时候,Si基底上通过颗粒支撑形成的MNL鼓泡,在复色光的照射下呈现出因等厚干涉引起的彩色同心圆环图样(图3(a))。MNL与基底贴附部分具有非常均一的颜色,表明两者之间的接触可视为理想的接触。图3(b)为MNL边沿的AFM图片,由此可以测出MNL的厚度为112 nm。3维AFM图片表明,鼓泡的顶部整体呈现出“锥尖”的形貌(图3(c))。从对应的2D剖面图可知,锥尖的高度为392 nm,底部半径的宽度为7.25 μm。很显然,这种通过大颗粒撑起来的鼓泡的顶端轮廓,与直径较小的颗粒所撑起来的鼓泡所具有的圆滑秃顶明显不一样。尤其是,从“锥尖”形貌来看,似乎大颗粒支撑的鼓泡顶端有似乎出现了塑性形变或者类似于膜的特征。如果将测量的tWR值代入方程(2),可得 γ p l a = 10.6 mJ/m2,远小于前面的测量值(表1)。其主要原因在于鼓泡的高度已经远大于MNL的厚度, W / t = 3.2 ,因此再采用纯弯曲的板理论,即方程(2),来计算将导致结果偏低。另一方面,如果将测量的tWR值代入方程(1),可得 γ f i l = 11.4 mJ/m2,与通过板理论获得的 γ p l a 值非常接近,且明显高于其他鼓泡的 γ f i l 值。这就说明,对于大颗粒支撑鼓泡,对应的形变模式已开始从板理论向膜理论过度。

最后,从我们测量结果来看(表1),MNL与基底之间的界面吸附能为42.9 ± 8.9 mJ/m2。理论上,MNL与基底之间的界面吸附能主要来自于范德华吸附作用,而范德华吸附能可以通过下式来估算 [4]:

γ vdW = A M i c a S i 12 π D 0 2 (3)

其中 A M i c a S i = A M i c a × A S i A M i c a = 8.9 × 10 20 J [36], A S i = 18.7 × 10 20 J [36], D 0 = 0.34 nm [37]。由此可得范德华吸附能在数值上约等于30 mJ/m2。因此,我们的实验测量结果与范德华吸附的理论计算值比较接近。另一方面,Yu等通过悬拱桥计算得到的MNL与Si片之间的粘附能,80~160 mJ/m2 [29],要远高于我们的实验测量值。引起这种差异的原因主要有两个:(1) 测量样品和测试环境不一样。MNL的表面粘附能强烈依赖于其表面的K离子浓度及其所形成的岛状结构的形貌和浓度,因此对MNL的种类和测试环境的湿度和温度非常敏感 [29] [30] [31] [38]。(2) 测试方法和对应力学模型不同。本文采用方法简单高效,易于实现,但是形成的鼓泡形貌可能会受到内部气体的影响,导致计算结果偏低;此外,由于制备技术上的困难,导致厚度很小的MNL在形成鼓泡的时候很容易破裂(与MNL的内禀脆性有关),由此所形成的鼓泡实际上并不能通过纯粹的板理论或膜理论来计算。因此,进一步改进制样技术,将是提高通过鼓泡法来测量MNL与基底之间界面粘附能的测试精度和可靠性的关键所在。当然,Yu等采用的悬拱桥测试法虽然精度相对较高,但是操纵非常复杂且耗时,这对于表面粘附能易受环境影响的MNL来说,非常不利 [30]。此外,悬拱桥测试法中的MNL与Si基底的界面劈尖是出于开放的大气之中,因此开放空气中的水蒸气很容易在劈尖处形成弯曲液面,从而显著增大吸附力(能),因此测量结果更接近由液面张力所形成的吸附能 [30];本文中采用的鼓泡法中MNL与Si基底的界面劈尖是出于封闭环境中,受水蒸气的影响相对较小,因此更接近于由范德华吸附力所产生的吸附能。

(a) (b) (c)

Figure 3. (a) OM image of a large particle-loaded blister; (b) 3D profile and 2D cross-section profile of the edge of the MNL; (c) 3D profile and 2D cross-section profile of the blister

图3. (a) 较大的颗粒支撑起来的鼓泡的光学照片;(b) MNL边缘的3D AFM图和对应的高度曲线;(c) 鼓泡的3D AFM图和对应的2D剖面曲线

4. 结论

采用纳米颗粒支撑的鼓泡法,在大气环境下测量了MNL与Si基底之间的吸附能。所获得的实验测量值42.9 ± 8.9 mJ/m2,与目前报道的测试结果更接近于通过范德华吸附理论获得的理论估算值~30 mJ/m2。这可能是因为本文中所采用的制样方法非常快捷,能基本排除空气中的水蒸气对测试结果的影响。同时,本文通过对照实验发现,在纳米颗粒与MNL的厚度大致相当时,通过板理论来计算吸附能比较准确;但是当颗粒比较大的时候,通过板理论获得的吸附能计算值将被低估。本文的测试结果不仅为MNL与Si基底吸附能提供了可靠的实验测量结果,为相关的微纳电子器件提供了重要的设计参数,而且对提高鼓泡法的可靠性和准确性具有非常重要的参考意义。

基金项目

感谢湖南师范大学大学生创新创业训练计划项目(项目批准号:2019129);国家自然科学基金面上项目(No. 12072111);长沙市自然科学基金项目(No. kq2007002)对于本研究的支持!

NOTES

*通讯作者。

参考文献

[1] Pizzocchero, F., Gammelgaard, L., Jessen, B.S., Caridad, J.M., Wang, L., Hone, J., Boggild, P. and Booth, T.J. (2016) The Hot Pick-Up Technique for Batch Assembly of van der Waals Heterostructures. Nature Communications, 7, Article No. 11894.
https://doi.org/10.1038/ncomms11894
[2] Liu, J.L. and Feng, X.Q. (2012) On Elastocapillarity: A Review. Acta Mechanica Sinica, 28, 928-940.
https://doi.org/10.1007/s10409-012-0131-6
[3] Zhang, W.-M., Yan, H.N., Peng, Z.-K. and Meng, G. (2014) Electrostatic Pull-In Instability in MEMS/NEMS: A Review. Sensors and Actuators A: Physical, 214, 187-218.
https://doi.org/10.1016/j.sna.2014.04.025
[4] Israelachvili, J.N. (2010) Intermolecular and Surface Forces. Else-vier Science, Amsterdam.
[5] 赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社, 2012.
[6] Kleinbichler, A., Bartosik, M., Volker, B. and Cordill, M.J. (2017) Thin Film Adhesion of Flexible Electronics Influenced by Interlayers. Advanced Engineering Materials, 19, Article ID: 1600665.
https://doi.org/10.1002/adem.201600665
[7] Liu, X.L. and Hersam, M.C. (2018) Interface Characterization and Control of 2D Materials and Heterostructures. Advanced Materials, 30, Article ID: 1801586.
https://doi.org/10.1002/adma.201801586
[8] Liechti, K.M. (2019) Characterizing the Interfacial Behavior of 2D Materials: A Review. Experimental Mechanics, 59, 395-412.
https://doi.org/10.1007/s11340-019-00475-6
[9] Tsegaye, M.Y. and Won, S. (2019) Adhesion Properties of 2D Materials. Journal of Physics D: Applied Physics, 52, Article ID: 364002.
https://doi.org/10.1088/1361-6463/ab27ad
[10] Dai, Z.H., Liu, L.Q. and Zhang, Z. (2019) Strain Engineering of 2D Materials: Issues and Opportunities at the Interface. Advanced Materials, 31, Article ID: 1805417.
https://doi.org/10.1002/adma.201805417
[11] Castellanos-Gomez, A., Poot, M., Amor-Amorós, A., Steele, G.A., van der ZantHerre, S.J., Nicolás, A. and Rubio-Bollinger, G. (2012) Mechanical Properties of Freely Suspended Atomically Thin Dielectric Layers of Mica. Nano Research, 5, 550-557.
https://doi.org/10.1007/s12274-012-0240-3
[12] Low, C.G., Zhang, Q., Hao, Y.F. and Ruoff, R.S. (2014) Gra-phene Field Effect Transistors with Mica as Gate Dielectric Layers. Small, 10, 4213-4218.
https://doi.org/10.1002/smll.201303929
[13] Chen, Y.L., Fan, L.L., Fang, Q., Xu, W.Y., Chen, S., Zan, G.B., Ren, H., Song, L. and Zou, C.W. (2017) Free-Standing SWNTs/VO2/Mica Hierarchical Films for High-Performance Ther-mochromic Devices. Nano Energy, 31, 144-151.
https://doi.org/10.1016/j.nanoen.2016.11.030
[14] Low, C. and Zhang, Q. (2012) Ultra-Thin and Flat Mica as Gate Dielectric Layers. Small, 8, 2178-2183.
https://doi.org/10.1002/smll.201200300
[15] Rogers, J.A. and Huang, Y.G. (2009) A Curvy, Stretchy Future for Electronics. Proceedings of the National Academy of Sciences of the United States of America, 106, 10875-10876.
https://doi.org/10.1073/pnas.0905723106
[16] Harris, K.D., Elias, A.L. and Chung, H.J. (2016) Flexible Elec-tronics under Strain: A Review of Mechanical Characterization and Durability Enhancement Strategies. Journal of Materials Science, 51, 2771-2805.
https://doi.org/10.1007/s10853-015-9643-3
[17] Zimmermann, S., Klauser, W., Mead, J., Wang, S.L., Huang, H. and Fatikow, S. (2019) A Laterally Sensitive Colloidal Probe for Accurately Measuring Nanoscale Adhesion of Textured Surfaces. Nano Research, 12, 389-396.
https://doi.org/10.1007/s12274-018-2228-0
[18] Leite, F.L., Bueno, C.C., Da Roz, A.L., Ziemath, E.C. and Oliveira, O.N. (2012) Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. International Journal of Molecular Sciences, 13, 12773-12856.
https://doi.org/10.3390/ijms131012773
[19] Koenig, S.P., Boddeti, N.G., Dunn, M.L. and Scott, B.J. (2011) Ul-trastrong Adhesion of Graphene Membranes. Nature Nanotechnology, 6, 543-546.
https://doi.org/10.1038/nnano.2011.123
[20] Lee, M.J., Xie, H.T., Wang, S.L. and Huang, H. (2018) Enhanced Adhesion of ZnO Nanowires during in Situ Scanning Electron Microscope Peeling. Nanoscale, 10, 3410-3420.
https://doi.org/10.1039/C7NR09423J
[21] Roenbeck, M.R., Wei, X.D., Beese, A.M., Naraghi, M., Al’ona, F., Paci, J.T., Schatz, G.C. and Espinosa, H.D. (2014) In Situ Scanning Electron Microscope Peeling to Quantify Surface Energy between Multiwalled Carbon Nanotubes and Graphene. ACS Nano, 8, 124-138.
https://doi.org/10.1021/nn402485n
[22] Tang, D.-M., Kvashnin, D.G., Najmaei, S., Bando, Y., Kimoto, K., Koskinen, P., Ajayan, P.M., Yakobson, B.I., Sorokin, P.B., Lou, J. and Golberg, D. (2014) Nanomechanical Cleavage of Molybdenum Disulphide Atomic Layers. Nature Communications, 5, 3631.
https://doi.org/10.1038/ncomms4631
[23] Mead, J.L., Wang, S.L., Zimmermann, S. and Huang, H. (2020) Inter-facial Adhesion of ZnO Nanowires on a Si Substrate in Air. Nanoscale, 12, 8237-8247.
https://doi.org/10.1039/D0NR01261K
[24] Zong, Z., Chen, C.-L., Dokmeci, M.R. and Wan, K.-T. (2010) Direct Measurement of Graphene Adhesion on Silicon Surface by Intercalation of Nanoparticles. Journal of Applied Physics, 107, Article ID: 026104.
https://doi.org/10.1063/1.3294960
[25] Gao, X.Y., Yu, X.Y., Li, B.X., Fan, S.C. and Li, C. (2017) Measuring Graphene Adhesion on Silicon Substrate by Single and Dual Nanoparticle-Loaded Blister. Advanced Materials Interfaces, 4, Article ID: 1601023.
https://doi.org/10.1002/admi.201601023
[26] Cao, Z.y., Tao, L., Akinwande, D., Huang, R. and Liechti, K.M. (2016) Mixed-Mode Traction-Separation Relations between Graphene and Copper by Blister Tests. International Journal of Solids and Structures, 84, 147-159.
https://doi.org/10.1016/j.ijsolstr.2016.01.023
[27] Sanchez, D.A., Dai, Z.H., Wang, P., Cantu-Chavez, A., Brennan, C.J., Huang, R. and Lu, N.S. (2018) Mechanics of Spontaneously Formed Nanoblisters Trapped by Transferred 2D Crystals. Proceedings of the National Academy of Sciences of the United States of America, 115, 7884-7889.
https://doi.org/10.1073/pnas.1801551115
[28] Li, G.X., Yilmaz, C., An, X.H., Somu, S., Kar, S., Jung, Y.J., Busnaina, A. and Wan, K.T. (2013) Adhesion of Graphene Sheet on Nano-Patterned Substrates with Nano-Pillar Array. Journal of Applied Physics, 113, Article ID: 244303.
https://doi.org/10.1063/1.4811718
[29] Yu, B.W., Hou, L.Z., Wang, S.L. and Huang, H. (2019) Environ-ment-Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulation-Based Bridging Method. Advanced Materials Interfaces, 6, Article ID: 1801552.
https://doi.org/10.1002/admi.201801552
[30] Yu, B.W., Wang, F., Wang, S.L., Hu, Y.J. and Huang, H. (2020) The Adhesion of Mica Nanolayers on a Silicon Substrate in Air. Advanced Materials Interfaces, 7, Article ID: 2000541.
https://doi.org/10.1002/admi.202000541
[31] Yu, B.W., Hou, L.Z., Wang, S.L. and Huang, H. (2021) The Adhe-sion of a Mica Nanolayer on a Single-Layer Graphene Supported by SiO2 Substrate Characterised in Air. Nanotech-nology, 32, Article ID: 045701.
https://doi.org/10.1088/1361-6528/abbf25
[32] O’Brien, E.P., Goldfarb, S. and White, C.C. (2005) Influence of Experimental Setup and Plastic Deformation on the Shaft-Loaded Blister Test. The Journal of Adhesion, 81, 599-621.
https://doi.org/10.1080/00218460590954601
[33] Malyshev, B.M. and Salganik, R.L. (1965) The Strength of Adhesive Joints Using the Theory of Cracks. International Journal of Fracture Mechanics, 1, 114-128.
https://doi.org/10.1007/BF00186749
[34] Zhao, M.H., Zheng, W.L., Fan, C.Y. and Pan, E.N. (2011) Nonlinear Elastic Mechanics of the Ball-Loaded Blister Test. International Journal of Engineering Science, 49, 839-855.
https://doi.org/10.1016/j.ijengsci.2011.04.007
[35] Wan, K.-T. (1999) Fracture Mechanics of a Shaft-Loaded Blister Test-Transition from a Bending Plate to a Stretching Membrane. The Journal of Adhesion, 70, 209-219.
https://doi.org/10.1080/00218469908009556
[36] Bergstrom, L. (1997) Hamaker Constants of Inorganic Materials. Advances in Colloid and Interface Science, 70, 125-169.
https://doi.org/10.1016/S0001-8686(97)00003-1
[37] Wan, K.T., Smith, D.T. and Lawn, B.R. (1992) Fracture and Contact Adhesion Energies of Mica Mica, Silica Silica, and Mica Silica Interfaces in Dry and Moist Atmospheres. Journal of the American Ceramic Society, 75, 667-676.
https://doi.org/10.1111/j.1151-2916.1992.tb07857.x
[38] Hou, L.Z., Lee, M.J., Wang, S.L. and Huang, H. (2019) The Kinetic Frictional Shear Stress of ZnO Nanowires on Graphite and Mica Substrates. Applied Surface Science, 465, 584-590.
https://doi.org/10.1016/j.apsusc.2018.09.143