|
[1]
|
Marquardt, H., Speziale S., Reichmann, H.J., Frost, D.J., Schilling, F.R. and Garnero, E.J. (2009) Elastic Shear Anisot-ropy of Ferropericlase in Earth’s Lower Mantle. Science, 324, 224-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Karki, B.B., Stixrude, L., Clark, S.J., Warren, M.C., Ackland, G.J. and Crain, J. (1997) Elastic Properties of Orthorhombic MgSiO3 Perovskite at Lower Mantle Pressures. American Min-eralogist, 82, 635-638. [Google Scholar] [CrossRef]
|
|
[3]
|
Dobson, D.P. and Brodholt, J.P. (2000) The Electrical Conductivity of the Lower Mantle Phase Magnesiowüstite at High Temperatures and Pressures. Journal of Geophysical Research: Solid Earth, 105, 531-538. [Google Scholar] [CrossRef]
|
|
[4]
|
Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York.
https://trove.nla.gov.au/version/44888034
|
|
[5]
|
Kesson, S.E., Fitz Gerald, J.D. and Shelley, J.M. (1998) Mineralogy and Dynamics of a Pyrolite Lower Mantle. Nature, 393, 252-255. [Google Scholar] [CrossRef]
|
|
[6]
|
Irifune, T., Kubo, N., Isshiki, M., et al. (1998) Phase Transformations in Serpentine and Transportation of Water into the Lower Mantle. Geophysical Research Letters, 25, 203-206. [Google Scholar] [CrossRef]
|
|
[7]
|
Ricolleau, A., Perrillat, J.-P, Fiquet G, Daniel, I., Matas, J., Addad, A., et al. (2010) Phase Relations and Equation of State of a Natural MORB: Im-plications for the Density Profile of Subducted Oceanic Crust in the Earth’s Lower Mantle. Journal of Geophysical Re-search, 115, Article ID: B08202. [Google Scholar] [CrossRef]
|
|
[8]
|
Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B. and Rossman, G.R. (2014) Mineralogy. Discovery of Bridgmanite, the Most Abundant Mineral in Earth, in a Shocked Meteorite. Science, 346, 1100-1102. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Boehler, R. (2000) High-Pressure Experiments and the Phase Dia-gram of Lower Mantle and Core Materials. Reviews of Geophysics, 38, 221-245. [Google Scholar] [CrossRef]
|
|
[10]
|
Nishiyama, N. and Yagi, T. (2003) Phase Relation and Mineral Chemistry in Pyrolite to 2200°C under the Lower Mantle Pressures and Implications for Dynamics of Mantle Plumes: Phase Relation and Chemistry in Pyrolite. Journal of Geophysical Research: Solid Earth, 108, Article No. 2255. http://doi.wiley.com/10.1029/2002JB002216 [Google Scholar] [CrossRef]
|
|
[11]
|
Murakami, M., Ohishi, Y., Hirao, N. and Hirose, K. (2012) A Per-ovskitic Lower Mantle Inferred from High-Pressure, High-Temperature Sound Velocity Data. Nature, 485, 90-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hirose, K., Sinmyo, R. and Hernlund, J. (2017) Perovskite in Earth’s Deep Interior. Science, 358, 734-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, D. and Angel, R.J. (2011) Octahedral Tilts, Sym-metry-Adapted Displacive Modes and Polyhedral Volume Ratios in Perovskite Structures. Acta Crystallographica Sec-tion B Structural Science, 67, 302-314. [Google Scholar] [CrossRef]
|
|
[14]
|
Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D. and Hanfland, M. (2002) Structural Refinements of Magnesite at Very High Pressure. American Mineralogist, 87, 1261-1265. [Google Scholar] [CrossRef]
|
|
[15]
|
Ito, E., Kubo, A., Katsura, T., Akaogi, M. and Fujita, T. (1998) High-Pressure Transformation of Pyrope (Mg3Al2Si3O12) in a Sintered Diamond Cubic Anvil Assembly. Geo-physical Research Letters, 25, 821-824. [Google Scholar] [CrossRef]
|
|
[16]
|
Kudoh, Y., Prewitt, C.T., Finger, L.W., Darovskikh, A. and Ito, E. (1990) Effect of Iron on the Crystal Structure of (Mg,Fe)SiO3 Perovskite. Geophysical Research Letters, 17, 1481-1484. [Google Scholar] [CrossRef]
|
|
[17]
|
Catalli, K., Shim, S.-H., Prakapenka, V.B., Zhao, J.Y., Sturhahn, W., Chow, P., et al. (2010) Spin State of Ferric Iron in MgSiO3 Perovskite and Its Effect on Elastic Properties. Earth and Planetary Science Letters, 289, 68-75. [Google Scholar] [CrossRef]
|
|
[18]
|
Yamamoto, T., Yuen, D.A. and Ebisuzaki, T. (2003) Substitution Mechanism of Al Ions in MgSiO3 Perovskite under High Pressure Conditions from First-Principles Calculations. Earth and Planetary Science Letters, 206, 617-625. [Google Scholar] [CrossRef]
|
|
[19]
|
Akber-Knutson, S. and Bukowinski, M.S.T. (2004) The Energetics of Aluminum Solubility into MgSiO3 Perovskite at Lower Mantle Conditions. Earth and Planetary Science Letters, 220, 317-330. [Google Scholar] [CrossRef]
|
|
[20]
|
Andrault, D. (2007) Properties of Lower Mantle Al-(Mg,Fe) SiO3 Perovskite. Special Papers—Geological Society of America, 421, 15-36. [Google Scholar] [CrossRef]
|
|
[21]
|
Kojitani, H., Katsura, T. and Akaogi, M. (2007) Aluminum Substitu-tion Mechanisms in Perovskite-Type MgSiO3: An Investigation by Rietveld Analysis. Physics and Chemistry of Miner-als, 34, 257-267. [Google Scholar] [CrossRef]
|
|
[22]
|
Hernández, E.R., Alfè, D. and Brodholt, J. (2013) The Incorpora-tion of Water into Lower-Mantle Perovskites: A First-Principles Study. Earth and Planetary Science Letters, 364, 37-43. [Google Scholar] [CrossRef]
|
|
[23]
|
Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo, T. and Kondo, T. (2003) Water Solubility in Mg-Perovskites and Water Storage Capacity in the Lower Mantle. Earth and Planetary Science Letters, 211, 189-203. [Google Scholar] [CrossRef]
|
|
[24]
|
Frost, D.J. and Mccammon, C.A. (2008) The Redox State of Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 36, 389-420. [Google Scholar] [CrossRef]
|
|
[25]
|
Frost, D.J., Liebske, C., Langenhorst, F., McCam-mon, C.A., Trønnes, R.G. and Rubie, D.C. (2004) Experimental Evidence for the Existence of Iron-Rich Metal in the Earth’s Lower Mantle. Nature, 428, 409-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bengtson, A., Persson, K. and Morgan, D. (2008) Ab Initio Study of the Composition Dependence of the Pressure-Induced Spin Crossover in Perovskite (Mg1-x,Fex)SiO3. Earth and Planetary Science Letters, 265, 535-545. [Google Scholar] [CrossRef]
|
|
[27]
|
Lin, J.-F., Speziale, S., Mao, Z. and Marquardt, H. (2013) Effects of the Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Ge-ochemistry: Spin Transition in Lower Mantle. Reviews of Geophysics, 51, 244-275. [Google Scholar] [CrossRef]
|
|
[28]
|
Jackson, J.M., Sturhahn, W., Shen, G., Zhao, J., Hu, M.Y., Errandonea, D., et al. (2005) A Synchrotron Mössbauer Spectroscopy Study of (Mg,Fe)SiO3 Perovskite up to 120 GPa. American Min-eralogist, 90, 199-205. [Google Scholar] [CrossRef]
|
|
[29]
|
Hsu, H., Umemoto, K., Blaha, P. and Wentzcovitch, R.M. (2010) Spin States and Hyperfine Interactions of Iron in (Mg,Fe)SiO3 Perovskite under Pressure. Earth and Planetary Science Letters, 294, 19-26. [Google Scholar] [CrossRef]
|
|
[30]
|
Dorfman, S.M., Meng, Y., Prakapenka, V.B. and Duffy, T.S. (2013) Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite. Earth and Planetary Science Letters, 361, 249-257. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, L., Meng, Y., Dera, P., Yang, W., Mao, W.L. and Mao, H.-K. (2013) Single-Crystal Structure Determination of (Mg,Fe)SiO3 Postperovskite. Proceedings of the National Academy of Sciences of the United States of America, 110, 6292-6295. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ballaran, T.B., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M., et al. (2012) Effect of Chemistry on the Compressibility of Silicate Perovskite in the Lower Mantle. Earth and Planetary Science Letters, 333-334, 181-190. [Google Scholar] [CrossRef]
|
|
[33]
|
Mao, Z., Wang, F., Lin, J.-F., Fu, S., Yang, J., Wu, X., et al. (2017) Equation of State and Hyperfine Parameters of High-Spin Bridgmanite in the Earth’s Lower Mantle by Synchro-tron X-Ray Diffraction and Mössbauer Spectroscopy. American Mineralogist, 102, 357-368. [Google Scholar] [CrossRef]
|
|
[34]
|
Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. and Ito, E. (2010) Adiabatic Temperature Profile in the Mantle. Physics of the Earth and Planetary Interiors, 183, 212-218. [Google Scholar] [CrossRef]
|
|
[35]
|
Manthilake, G.M., de Koker, N., Frost, D.J. and McCammon, C.A. (2011) Lattice Thermal Conductivity of Lower Mantle Minerals and Heat Flux from Earth’s Core. Proceedings of the Na-tional Academy of Sciences of the United States of America, 108, 17901-17904. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ohta, K., Cohen, R.E., Hirose, K., Haule, K., Shimizu, K. and Ohishi, Y. (2012) Experimental and Theoretical Evidence for Pressure-Induced Metallization in FeO with Rocksalt-Type Structure. Physical Review Letters, 108, Article ID: 026403. https://link.aps.org/doi/10.1103/PhysRevLett.108.026403 [Google Scholar] [CrossRef]
|
|
[37]
|
Tang, X., Ntam, M.C., Dong, J., Rainey, E.S.G. and Kavner, A. (2014) The Thermal Conductivity of Earth’s Lower Mantle: Thermal Conductivity of Earth’s Mantle. Geophysical Research Letters, 41, 2746-2752. [Google Scholar] [CrossRef]
|
|
[38]
|
Hsieh, W.-P., Deschamps, F., Okuchi, T. and Lin, J.-F. (2018) Ef-fects of Iron on the Lattice Thermal Conductivity of Earth’s Deep Mantle and Implications for Mantle Dynamics. Pro-ceedings of the National Academy of Sciences of the United States of America, 115, 4099-4104. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hsieh, W.-P., Deschamps, F., Okuchi, T. and Lin, J.-F. (2017) Reduced Lattice Thermal Conductivity of Fe-Bearing Bridgmanite in Earth’s Deep Mantle: Reduced Conductivity of Fe-Bridgmanite. Journal of Geophysical Research: Solid Earth, 122, 4900-4917. [Google Scholar] [CrossRef]
|
|
[40]
|
Goncharov, A.F., Beck, P., Struzhkin, V.V., Haugen, B.D. and Ja-cobsen, S.D. (2009) Thermal Conductivity of Lower-Mantle Minerals. Physics of the Earth and Planetary Interiors, 174, 24-32. [Google Scholar] [CrossRef]
|
|
[41]
|
Tateno, S., Hirose, K., Sata, N. and Ohishi, Y. (2009) Determina-tion of Post-Perovskite Phase Transition Boundary up to 4400 K and Implications for Thermal Structure in D” Layer. Earth and Planetary Science Letters, 277, 130-136. [Google Scholar] [CrossRef]
|
|
[42]
|
Ye, Y., Prakapenka, V., Meng, Y. Shim, S.-H. (2017) Intercomparison of the Gold, Platinum, and MgO Pressure Scales up to 140 GPa and 2500 K. Journal of Geophysical Research: Solid Earth, 122, 3450-3464. [Google Scholar] [CrossRef]
|
|
[43]
|
Kurnosov, A., Marquardt, H., Frost, D.J., Boffa Ballaran, T. and Zib-erna, L. (2017) Evidence for a Fe3+-Rich Pyrolitic Lower Mantle from (Al,Fe)-Bearing Bridgmanite Elasticity Data. Na-ture, 543, 543-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, Q. (n.d.) A Computational Study of Calcium Carbonate. PhD Thesis, University College London, London, 215
|
|
[45]
|
Wentzcovitch, R.M., Karki, B.B., Karato, S. and Da Silva, C.R.S. (1998) High Pressure Elastic Anisotropy of MgSiO3 Perovskite and Geophysical Implications. Earth and Planetary Sci-ence Letters, 164, 371-378. [Google Scholar] [CrossRef]
|
|
[46]
|
Cottaar, S., Heister, T., Rose, I. and Unterborn, C. (2014) BurnMan: A Lower Mantle Mineral Physics Toolkit. Geochemistry, Geophysics, Geosystems, 15, 1164-1179. [Google Scholar] [CrossRef]
|
|
[47]
|
Dziewonski, A.M. and Anderson, D.L. (1981) Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25, 297-356. [Google Scholar] [CrossRef]
|
|
[48]
|
Yoshino, T., Kamada, S., Zhao, C., Ohtani, E. and Hirao, N. (2016) Electrical Conductivity Model of Al-Bearing Bridgmanite with Implications for the Electrical Structure of the Earth’s Lower Mantle. Earth and Planetary Science Letters, 434, 208-219. [Google Scholar] [CrossRef]
|
|
[49]
|
Ohta, K., Hirose, K., Shimizu, K., Sata, N. and Ohishi, Y. (2010) The Electrical Resistance Measurements of (Mg,Fe)SiO3 Perovskite at High Pressures and Implications for Electronic Spin Transition of Iron. Physics of the Earth and Planetary Interiors, 180, 154-158. [Google Scholar] [CrossRef]
|
|
[50]
|
Sinmyo, R., Pesce, G., Greenberg, E., McCammon, C. and Du-brovinsky, L. (2014) Lower Mantle Electrical Conductivity Based on Measurements of Al, Fe-Bearing Perovskite under Lower Mantle Conditions. Earth and Planetary Science Letters, 393, 165-172. [Google Scholar] [CrossRef]
|
|
[51]
|
Ohta, K., Onoda, S., Hirose, K., Sinmyo, R., Shimizu, K., Sata, N., et al. (2008) The Electrical Conductivity of Post-Perovskite in Earth’s D” Layer. Science, 320, 89-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Holme, R. (1998) Electromagnetic Core—Mantle Coupling—I. Ex-plaining Decadal Changes in the Length of Day. Geophysical Journal International, 132, 167-180. [Google Scholar] [CrossRef]
|
|
[53]
|
Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., et al. (2018) Ice-VII Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth’s Deep Mantle. Science, 359, 1136-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Novella, D., Bolfan-Casanova, N., Nestola, F. and Harris, J.W. (2015) H2O in Olivine and Garnet Inclusions Still Trapped in Diamonds from the Siberian Craton: Implications for the Water Content of Cratonic Lithosphere Peridotites. Lithos, 230, 180-183. [Google Scholar] [CrossRef]
|
|
[55]
|
Nestola, F. and Smyth, J.R. (2016) Diamonds and Water in the Deep Earth: A New Scenario. International Geology Review, 58, 263-276. [Google Scholar] [CrossRef]
|
|
[56]
|
Ohtani, E., Toma, M., Litasov, K., Kubo, T. and Suzuki, A. (2001) Stability of Dense Hydrous Magnesium Silicate Phases and Water Storage Capacity in the Transition Zone and Lower Mantle. Physics of the Earth and Planetary Interiors, 124, 105-117. [Google Scholar] [CrossRef]
|
|
[57]
|
Kakizawa, S., Inoue, T., Suenami, H. and Kikegawa, T. (2015) Decarbonation and Melting in MgCO3-SiO2 System at High Temperature and High Pressure. Journal of Miner-alogical and Petrological Sciences, 110, 179-188. [Google Scholar] [CrossRef]
|
|
[58]
|
Fu, S., Yang, J., Karato, S., Vasiliev, A., Presniakov, M.Y., Gavriliuk, A.G., et al. (2019) Water Concentration in Single-Crystal (Al,Fe)-Bearing Bridgmanite Grown From the Hydrous Melt: Implications for Dehydration Melting at the Topmost Lower Mantle. Geophysical Research Letters, 46, 10346-10357. [Google Scholar] [CrossRef]
|
|
[59]
|
Dixon, J.E. and Clague, D.A. (2001) Volatiles in Basaltic Glasses from Loihi Seamount, Hawaii: Evidence for a Relatively Dry Plume Component. Journal of Petrology, 42, 627-654. [Google Scholar] [CrossRef]
|
|
[60]
|
Bolfan-Casanova, N., Keppler, H. and Rubie, D.C. (2000) Water Partitioning between Nominally Anhydrous Minerals in the MgO-SiO2-H2O System up to 24 GPa: Implications for the Distribution of Water in the Earth’s Mantle. Earth and Planetary Science Letters, 182, 209-221. [Google Scholar] [CrossRef]
|
|
[61]
|
Tauzin, B., Debayle, E. and Wittlinger, G. (2010) Seismic Evidence for a Global Low-Velocity Layer within the Earth’s Upper Mantle. Nature Geoscience, 3, 718-721. [Google Scholar] [CrossRef]
|
|
[62]
|
Yuan, K. and Romanowicz, B. (2017) Seismic Evidence for Partial Melting at the Root of Major Hot Spot Plumes. Science, 357, 393-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Bran-don, S., Steven, J., Thorsten, B., Liu, Z. and Dueker, K.G. (2014) Dehydration Melting at the Top of the Lower Mantle. Science, 344, 1265-1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Townsend, J.P., Tsuchiya, J., Bina, C.R. and Jacobsen, S.D. (2016) Water Partitioning between Bridgmanite and Postperovskite in the Lowermost Mantle. Earth and Planetary Science Letters, 454, 20-27. [Google Scholar] [CrossRef]
|
|
[65]
|
Ross, N.L. and Hazen, R.M. (1990) High Pressure Crystal Chem-istry of MgSiO3 Perovskite. Physics and Chemistry of Minerals, 17, 228-237. [Google Scholar] [CrossRef]
|
|
[66]
|
Fiquet, G., Andrault, D., Dewaele, A., Charpin, T., Kunz, M. and Haüsermann, D. (1998) P-V-T Equation of State of MgSiO3 Perovskite. Physics of the Earth and Planetary Interiors, 105, 21-32. [Google Scholar] [CrossRef]
|
|
[67]
|
Mao, Z., Lin, J.-F., Yang, J., Inoue, T. and Prakapenka, V.B. (2015) Effects of the Fe 3+ Spin Transition on the Equation of State of Bridgmanite: Fe3+ Spin Transition in Bridgmanite. Geophysical Research Letters, 42, 4335-4342. [Google Scholar] [CrossRef]
|
|
[68]
|
Wolf, A.S., Jackson, J.M., Dera, P. and Prakapenka, V.B. (2015) The Thermal Equation of State of (Mg, Fe)SiO3 Bridgmanite (Perovskite) and Implications for Lower Mantle Structures: Fe Bridgmanite EOS and Mantle Structures. Journal of Geophysical Research: Solid Earth, 120, 7460-7489. [Google Scholar] [CrossRef]
|
|
[69]
|
Lin, J.-F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., et al. (2016) High-Spin Fe2+ and Fe3+ in Single-Crystal Aluminous Bridgmanite in the Lower Mantle: Spin and Valence States of Bridgmanite. Geophysical Research Letters, 43, 6952-6959. [Google Scholar] [CrossRef]
|
|
[70]
|
Catalli, K., Shim, S.-H., Dera, P., Prakapenka, V.B., Zhao, J., Sturhahn, W., et al. (2011) Effects of the Fe3+ Spin Transition on the Properties of Aluminous Perovskite—New Insights for Lower-Mantle Seismic Heterogeneities. Earth and Planetary Science Letters, 310, 293-302. [Google Scholar] [CrossRef]
|
|
[71]
|
Liu, J., Dorfman, S.M., Zhu, F., Li, J., Wang, Y., Zhang, D., et al. (2018) Valence and Spin States of Iron Are Invisible in Earth’s Lower Mantle. Nature Communications, 9, Article No. 1284.
http://www.nature.com/articles/s41467-018-03671-5 [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Hsu, H., Yu, Y.G., Wentzcovitch, R.M. (2012) Spin Cross-over of Iron in Aluminous MgSiO3 Perovskite and Post-Perovskite. Earth and Planetary Science Letters, 359-360, 34-39. [Google Scholar] [CrossRef]
|
|
[73]
|
Hsu, H., Blaha, P., Cococcioni, M. and Wentzcovitch, R.M. (2011) Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO3 Perovskite. Physical Review Letters, 106, Article ID: 118501.
https://link.aps.org/doi/10.1103/PhysRevLett.106.118501 [Google Scholar] [CrossRef]
|
|
[74]
|
Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Casanova, N., Nakatsuka, A., et al. (2006) Reinvestigation of the MgSiO3 Perovskite Structure at High Pressure. American Mineralogist, 91, 533-536. [Google Scholar] [CrossRef]
|
|
[75]
|
Yang, H., Lin, J.-F., Hu, M.Y., Roskosz, M., Bi, W., Zhao, J., et al. (2019) Iron Isotopic Fractionation in Mineral Phases from Earth’s Lower Mantle: Did Terrestrial Magma Ocean Crystal-lization Fractionate Iron Isotopes? Earth and Planetary Science Letters, 506, 113-122. [Google Scholar] [CrossRef]
|