|
[1]
|
Long, J., Xie, X., Xu, J., Gu, Q., Chen, L. and Wang, X. (2012) Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols. ACS Catalysis, 2, 622-631. [Google Scholar] [CrossRef]
|
|
[2]
|
Xiao, C., Zhang, L., Hao, H. and Wang, W. (2019) High Selective Oxi-dation of Benzyl Alcohol to Benzylaldehyde and Benzoic Acid with Surface Oxygen Vacancies on W18O9/Holey Ul-trathin g-C3N4 Nanosheets. ACS Sustainable Chemistry & Engineering, 7, 7268-7276. [Google Scholar] [CrossRef]
|
|
[3]
|
Long, B., Ding, Z. and Wang, X. (2013) Carbon Nitride for the Selective Oxidation of Aromatic Alcohols in Water under Visible Light. ChemSusChem, 6, 2074-2078. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Cerdan, K., Ouyang, W., Colmenares, J.C., Muñoz-Batista, M.J., Luque, R. and Balu, A.M. (2019) Facile Mechanochemical Modification of g-C3N4 for Selective Photo-Oxidation of Benzyl Alcohol. Chemical Engineering Science, 194, 78-84. [Google Scholar] [CrossRef]
|
|
[5]
|
Ye, X., Chen, Y., Ling, C., Zhang, J., Meng, S., Fu, X., et al. (2018) Chalcogenide Photocatalysts for Selective Oxidation of Aromatic Alcohols to Aldehydes Using O2 and Visible Light: A Case Study of CdIn2S4, CdS and In2S3. Chemical Engineering Journal, 348, 966-977. [Google Scholar] [CrossRef]
|
|
[6]
|
李培贤, 赵慧, 闫旭燕, 杨雪, 李静君, 高水英. CdS@MoS2异质结催化剂可见光光催化产氢和选择性氧化苯甲醇的耦合反应[J]. 中国科学: 材料科学(英文), 2020, 63(11): 2239-2250. [Google Scholar] [CrossRef]
|
|
[7]
|
刘娟娟, 邹世辉, 吴嘉超, Hisayoshi, K., 赵红挺, 范杰. Pt/ZnO 在室温水相无碱条件下绿色催化苯甲醇选择性氧化[J]. 催化学报, 2018, 39(6): 1081-1089. [Google Scholar] [CrossRef]
|
|
[8]
|
Cui, Z., Zhou, H., Wang, G., Zhang, Y., Zhang, H. and Zhao, H. (2019) Enhancement of the Visible-Light Photocatalytic Activity of CeO2 by Chemisorbed Oxygen in the Selective Oxidation of Benzyl Alcohol. New Journal of Chemistry, 43, 7355-7362. [Google Scholar] [CrossRef]
|
|
[9]
|
Jing, K., Ma, W., Ren, Y., Xiong, J., Guo, B., Song, Y., et al. (2019) Hierarchical Bi2MoO6 Spheres in Situ Assembled by Monolayer Nanosheets Toward Photocatalytic Selective Oxidation of Benzyl Alcohol. Applied Catalysis B: Environmental, 243, 10-18. [Google Scholar] [CrossRef]
|
|
[10]
|
Bisht, N.S., Pancholi, D., Sahoo, N.G., Melkani, A.B., Mehta, S.P.S. and Dandapat, A. (2019) Effect of Ag-Fe-Cu Tri-Metal Loading in Bismuth Oxybromide to Develop a Novel Nanocomposite for the Sunlight Driven Photocatalytic Oxidation of Alcohols. Catalysis Science & Technology, 9, 3923-3932. [Google Scholar] [CrossRef]
|
|
[11]
|
Dai, Y., Ren, P., Li, Y., Lv, D., Shen, Y., Li, Y., et al. (2019) Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes. Angewandte Chemie-International Edition, 58, 6265-6270. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, L., Tang, J., Song, L.-N., Chen, P., He, J., Au, C.T., et al. (2019) Heterogeneous Photocatalysis for Selective Oxidation of Alcohols and Hydrocarbons. Applied Catalysis B: En-vironmental, 242, 379-388. [Google Scholar] [CrossRef]
|
|
[13]
|
Xiao, X., Liu, C., Hu, R., Zuo, X., Nan, J., Li, L., et al. (2012) Oxygen-Rich Bismuth Oxyhalides: Generalized One-Pot Synthesis, Band Structures and Visible-Light Photocatalytic Properties. Journal of Materials Chemistry, 22, 22840-22843. [Google Scholar] [CrossRef]
|
|
[14]
|
Mao, D., Yuan, J., Qu, X., Sun, C., Yang, S. and He, H. (2019) Size Tunable Bi3O4Br Hierarchical Hollow Spheres Assembled with {001}-Facets Exposed Nanosheets for Robust Photocatalysis Against Phenolic Pollutants. Journal of Catalysis, 369, 209-221. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhao, W., Yang, C., Huang, J., Jin, X., Deng, Y., Wang, L., et al. (2020) Selective Aerobic Oxidation of Sulfides to Sulfoxides in Water Under Blue Light Irradiation Over Bi4O5Br2. Green Chemistry, 22, 4884-4889. [Google Scholar] [CrossRef]
|
|
[16]
|
Li, P., Zhou, Z., Wang, Q., Guo, M., Chen, S., Low, J., et al. (2020) Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi5O7Br Nanostructures: Enhanced Performance by Oxygen Va-cancies. Journal of the American Chemical Society, 142, 12430-12439. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, R., Xie, F., Liu, J., Zhang, C., Zhang, X. and Fan, C. (2019) Room-Temperature Hydrolysis Fabrication of BiOBr/Bi12O17Br2 Z-Scheme Photocatalyst with Enhanced Resorcinol Degradation and NO Removal Activity. Chemosphere, 235, 767-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, C., Wang, Z., Li, X., Yi, X., Chu, H. and Wang, C. (2020) Facile Fabrication of BUC-21/Bi24O31Br10 Composites for Enhanced Photocatalytic Cr(VI) Reduction under White Light. Chemical Engineering Journal, 389, Article ID: 123431. [Google Scholar] [CrossRef]
|
|
[19]
|
Nosaka, Y. and Nosaka, A.Y. (2017) Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117, 11302-11336. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zou, Y., Shi, J.-W., Sun, L., Ma, D., Mao, S., Lv, Y., et al. (2019) Energy-Band-Controlled ZnxCd1-xIn2S4 Solid Solution Coupled with g-C3N4 Nanosheets as 2D/2D Hetero-structure toward Efficient Photocatalytic H2 Evolution. Chemical Engineering Journal, 378, Article ID: 122192. [Google Scholar] [CrossRef]
|
|
[21]
|
Xiao, Y., Feng, C., Fu, J., Wang, F., Li, C., Kunzelmann, V.F., et al. (2020) Band Structure Engineering and Defect Control of Ta3N5 for Efficient Photoelectrochemical Water Oxidation. Nature Catalysis, 3, 932-940. [Google Scholar] [CrossRef]
|