电化学催化芳基甲酸脱羧合成多取代三氮唑化合物
Electrochemical Oxidative Decarbonylation of Aromatic Formic Acid for Synthesis of 1,3,5-Trisubstituted 1H-1,2,4-Triazoles
DOI: 10.12677/JOCR.2021.92002, PDF, HTML, XML, 下载: 199  浏览: 327 
作者: 许甲喆, 周 烨, 曾东文, 何永辉*:云南民族大学民族医药学院,云南 昆明
关键词: 三氮唑电催化脱羧Triazoles Electrocatalysis Decarbonylation
摘要: 三氮唑类化合物具有抗炎、抗肿瘤等多种重要的生理活性,合成该类化合物一直是研究热点。本文以四丁基碘化铵为媒介,在电化学条件下实现了芳基甲酸脱羧活化,并与1,3-二取代-1,2,4-三氮唑类化合物发生脱氢交叉偶联反应,以45%~65%的产率得到了1,3,5-三取代-1,2,4-三氮唑类化合物。采用核磁共振和质谱等手段对产物结构进行表征,并提出了可能的反应机理。
Abstract: Triazoles have many important physiological activities such as anti-inflammatory and anti-tumor. Thus, synthesis of these compounds has been a research hotspot. Triazoles have many important physiological activities such as anti-inflammatory and anti-tumor. Thus, synthesis of these com-pounds has been a research hotspot. The electrocatalytic decarbonylation of benzoic acid to con-struct 1,3,5-trisubstituted-1,2,4-triazoles with 1,3-bisubstituted-1,2,4-triazoles was realized in 45%~65% yield at room temperature and without oxidant. The products were confirmed by 1H NMR, 13C NMR, MS and HRMS. The reaction mechanism is proposed.
文章引用:许甲喆, 周烨, 曾东文, 何永辉. 电化学催化芳基甲酸脱羧合成多取代三氮唑化合物[J]. 有机化学研究, 2021, 9(2): 7-12. https://doi.org/10.12677/JOCR.2021.92002

1. 引言

1,2,4-三氮唑化合物为含三个氮原子的五元杂环结构,具有抗菌、抗炎、抗肿瘤、抗结核等重要的生理活性 [1] [2] [3] [4] [5]。同时,也是合成药物(马拉维若、三唑仑等)的重要砌块 [6] [7]。除此之外,三氮唑化合物还在配位化学、材料化学和天然产物中有广泛的应用。比如,最近的研究表明,1,2,4-三氮唑作为配体,与Ir3+配位后以高的量子产率发射蓝光,显示在有机发光二极管中,有较好的应用潜力 [8]。

合成1,2,4-三氮唑一直是研究热点,合成方法包括传统的佩利扎里反应、过渡金属催化脱氢偶联和过氧化物催化等 [9] [10] [11] [12]。最近Habtamu等人以四丁基碘化铵为媒介,在高温条件下,利用氧化剂叔丁基过氧化氢成功地实现了芳酮脱羰基活化,进攻1,3-二取代三唑,得到了1,3,5-三取代-1,2,4-三氮唑化合物 [13]。然而,这些报道的催化体系存在使用化学当量的氧化剂、过渡金属及苛刻的反应条件等不足。

电化学催化反应利用电子作为催化剂,避免使用氧化剂、金属等,在温和条件下,化学家们开发出了许多利用碳氢活化策略实现的电化学催化反应 [14] [15] [16]。本课题组采用电化学催化方法,实现了碳氢活化成功合成咪唑等杂环化合物 [17]。本文采用电化学催化芳基羧酸脱羧活化,成功实现了三氮唑杂环的碳氢活化交叉偶联反应,高选择性的构建了1,3,5-三取代的-1,2,4-三氮唑化合物。该方法具有操作简单,绿色环保等特点。

2. 实验部分

2.1. 主要仪器与试剂

Bruker-400型核磁共振仪(CDCl3为溶剂,TMS为内标)、BrukermicroTOF-Q II型高分辨质谱仪(国布鲁克公司),电化学合成仪ElectraSyn2.0 (德国IKA)。

柱分离用200~300目硅胶、溶剂和试剂均为市售分析纯;乙腈(分析纯,南京化学试剂股份有限公司);试验所用芳基甲酸1,3-二取代1,2,4-三氮唑类化合物、四丁基碘化铵均购自北京伊诺凯科技有限公司。

2.2. 实验方法

于25 mL的三颈圆底烧瓶中加入22 mg苯甲酸1 (0.2 mmol),44 mg三氮唑2 (0.2 mmol),36.9 mg四丁基碘化铵(0.1 mmol),15 ml乙腈,混合均匀,15 mm × 15 mm铂片为正极和负极,室温下以9 mA电流通电5小时。反应完全后,混合物减压脱溶,得残余物,柱层析(V(石油醚):V(乙酸乙酯) = 60:1) 纯化得化合物3。

1,3,5-三苯基-1-氢-1,2,4-三氮唑(3a):淡黄色固体,65%收率。1H NMR (400 MHz, CDCl3) δ: 8.27 (d, J = 7.2 Hz, 2H), 7.57~7.60 (m, 2H), 7.48~7.53 (m, 2H), 7.43~7.47 (m, 6H), 7.43~7.45 (m, 1H), 7.36~7.39 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.9, 154.7, 138.3, 130.7, 130.0, 129.3, 129.0, 128.9, 128.8, 128.5, 128.0, 126.6, 125.4; LRMS (EI 70 eV) m/z (%): 297 (M+, 100); HRMS m/z (ESI) calcd for C20H16N3 (M + H)+ 298.1338, found 298.1335。

1,3-二苯基-5-(对-甲苯基)-1-氢-1,2,4-三氮唑(3b):淡黄色固体,62%收率。1H NMR (400 MHz, CDCl3) δ: 8.27 (t, J = 6.8 Hz, 2H), 7.42~7.48 (m, 10H), 7.16 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.8, 154.8, 140.1, 138.4, 130.8, 129.3, 129.2, 128.9, 128.8, 128.7, 128.5, 126.5, 125.4, 125.1, 21.3; LRMS (EI 70 eV) m/z (%): 311 (M+, 100); HRMS m/z (ESI) calcd for C21H18N3 (M + H)+ 312.1495, found 312.1488。

5-(对-甲氧苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3c):淡黄色固体,60%收率;1H NMR (400 MHz, CDCl3) δ: 8.21~8.23 (m, 2H), 7.38~7.48 (m, 10H), 6.83 (d, J = 9.2 Hz, 2H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 160.7, 159.8, 152.6, 136.4, 130.8, 129.4, 128.3, 128.2, 127.6, 127.5, 125.5, 124.4, 118.3, 112.9, 54.2; HRMS m/z (ESI) calcd for C21H18N3O (M + H)+ 328.1444, found 328.1449。

5-(4-氯苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3d):淡黄色固体,收率55%。1H NMR (400 MHz, CDCl3) δ: 8.23 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 7.40~7.52 (m, 10H), 7.32~7.35 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 162.0, 153.7, 138.1, 136.2, 130.5, 130.2, 129.5, 129.5, 129.0, 128.8, 128.6, 126.5, 126.4, 125.4; LRMS (EI 70 eV) m/z (%): 331 (M+, 100); HRMS m/z (ESI) calcd for C20H15ClN3 (M + H)+ 332.0949, found 332.0955。

5-(4-氟苯基)-1,3-二苯基-1-氢-1,2,4-三氮唑(3e),淡黄色固体,54%收率;1HNMR (400 MHz, CDCl3) δ: 8.13 (dd, J = 8.4 Hz, 1.6 Hz, 2H), 7.45 (dd, J = 8.8 Hz, 5.2 Hz, 2H), 7.30~7.37 (m, 8H), 6.95 (t, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 164.8 (d, J = 249.7 Hz), 162.2, 154.1, 138.4, 131.3, 131.2, 130.9, 129.7 (d, J = 3.3 Hz), 129.2, 128.8, 126.8, 125.7, 124.4 (d, J = 3.5 Hz), 116.1 (d, J = 21.8 Hz); LRMS (EI 70 eV) m/z (%): 315 (M+, 100); HRMS m/z (ESI) calcd for C20H15FN3 (M + H)+ 316.1244, found 316.1249。

1,3-二苯基-5-(2-噻吩)-1-氢-1,2,4-三唑(3f):白色油状物,收率61%。1H NMR (400 MHz, CDCl3) δ: 8.21 - 8.23 (m, 2H), 7.51 (s, 5H), 7.40~7.47 (m, 3H), 7.36 (dd, J = 4.8 Hz, 0.8 Hz, 1H), 7.05 (dd, J = 3.6 Hz, 0.8 Hz, 1H), 6.93 (dd, J = 5.2 Hz, 4.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 161.8, 150.1, 137.9, 130.5, 129.8, 129.5, 129.4, 128.8, 128.7, 128.5, 127.5, 126.6, 126.6, 125.3; LRMS (EI 70 eV) m/z (%): 303 (M+, 100); HRMS m/z (ESI) calcd for C18H14N3S (M + H)+ 304.0902, found 304.0907。

5-(naphthalen-1-yl)-1,3-二苯基-1-氢-1,2,4-三氮唑(3g):棕红色油状物,收率45%; 1H NMR (400 MHz, CDCl3) δ: 8.31~8.33 (m, 2H), 7.94 (dd, J = 12.8 Hz, 8.0 Hz, 2H), 7.87 (dd, J = 6.8 Hz, 2.0 Hz, 1H), 7.39~7.51 (m, 7H), 7.28~7.30 (m, 2H), 7.20~7.23 (m, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.0, 153.7, 137.8, 133.6, 131.5, 130.7, 130.6, 129.4, 129.0, 128.9, 128.6, 128.3, 128.0, 127.2, 126.6, 126.5, 126.0, 125.3, 124.9, 123.9; LRMS (EI 70 eV) m/z (%): 347 (M+, 100); HRMS m/z (ESI) calcd for C24H18N3 (M + H)+ 348.1495, found 348.1490。

3. 结果与讨论

3.1. 反应条件的筛选

以苯甲酸1a (0.2 mmol)和三氮唑2 (0.2 mmol)为底物,以四丁基碘化铵(0.1 mmol)为催化媒介的反应为模型,我们探讨了催化媒介的类型、电流的大小、溶剂的种类以及反应温度对模型反应产率的影响(表1)。

首先探讨催化媒介对反应的影响(表1,entries 1~5)。从表中可以看出,无催化媒介条件下不能发生反应;使用碘化铵、溴化铵均不如四丁基碘化铵的产率高;增加催化媒介的量不能提高反应产率。对溶剂进行了筛选,发现溶剂甲醇、乙醇和DMSO均会使产率有所下降(表1,entries 6~8)。随后对电流进行筛选,研究表明没有电流时,反应不能发生;电流为6mA和12mA时,产率均有所下降,说明9 mA电流为最合适的电流(表1,entries 9~11)。最后,对反应温度进行了考察(表1,entries 12~13),结果表明提高反应温度不能使产率提高。因此,此反应的最优反应条件为:以四丁基碘化铵为媒介、9 mA电流、乙腈为溶剂,室温下反应5小时。

Table 1. Optimization of reaction conditions

表1. 反应条件的优化

3.2. 目标产物的普适性研究

根据上述建立的最优反应条件(表1,Entries 2),得到了中等产率的目标化合物3a-3g,我们对该反应的底物普适性进行了研究,结果如表2所示。从表中可以看出,芳基羧基1a-1e的苯环上无论带有强吸电子基团还是给电子基团,都能很好的发生脱羧活化,实现三氮唑杂环的碳氢活化交叉偶联反应,以中等产率得到目标化合物。此外,芳环扩展到噻吩或者萘环,反应均能较好的发生。因此,该反应体系中芳基羧酸具有较好的底物普适性。

Table 2. Investigation of substrate scope

表2. 底物普适性研究

3.3. 反应机理分析

以模型反应为研究对象,在最优反应条件下对反应机理进行探讨。当反应中加入0.2 mmol自由基抑制剂2,2,6,6-四甲基哌啶氮氧化物时,反应受到抑制。根据文献 [13] 提出图1所示的反应机理:电化学条件下,碘负离子在阳极被氧化成碘自由基,该自由基进攻苯甲酸,导致苯甲酸脱氢,并进一步脱羰基,生成苯基自由基。然后,苯基自由基进攻二取代–三氮唑上的碳氢键,生成自由基中间体,经单电子转移并脱氢后得到目标化合物3a。

Figure 1. Plausible mechanism for synthesis of compound 3a

图1. 合成化合物3a可能的反应机理

4. 结论

采用碘盐媒介的电化学催化芳基脱羧活化,在室温下实现了1,3-二取代-1,2,4-三氮唑的碳氢活化交叉偶联反应,得到了1,3,5-三取代-1,2,4-三氮唑化合物。目标化合物用1HNMR、13CNMR、HRMS等进行了结构表征。以特征目标产物例,分析了其波谱数据及可能的反应机理。该反应具有操作简便和环境友好等特点。

NOTES

*通讯作者。

参考文献

[1] Gabor, M. (1986) Anti-Inflammatory and Anti-Allergic Properties of Flavonoids. Progress in Clinical and Biological Research, 213, 471-480.
[2] Singh, G., Singh, L. and Ishar, M.P.S. (2002) 2-(N-Methylanilino)-3-Formylchromone—A Versatile Synthon for Incorporation of Chromone Moiety in a Variety of Heterocyclic Systems and Macrocycles through Reactions with Bifunctional Nucleophiles. Tetrahedron, 58, 7883-7890.
https://doi.org/10.1016/S0040-4020(02)00908-0
[3] Martens, S. and Mithofer, A. (2005) Flavones and Flavone Synthases. Phytochemistry, 66, 2399-2407.
https://doi.org/10.1016/j.phytochem.2005.07.013
[4] Chohan, Z.H., Shaikh, A.U., Rauf, A. and Supuran, C.T. (2006) Antibacterial, Antifungal and Cytotoxic Properties of Novel N-Substituted Sulfonamides from 4-Hydroxycoumarin. Journal of Enzyme Inhibition and Medicinal Chemistry, 21, 741-748.
https://doi.org/10.1080/14756360600810340
[5] Djemgou, P.C., Gatsing, D., Tchuendem, M., Ngadjui, B.T., Tane, P., Ahmed, A.A., Gamal-Eldeen, A.M., Adoga, G.I., Hirata, T. and Mabry, T.J. (2006) Antitumor and Immunostimulatory Activity of Two Chromones and Other Constituents from Cassia Petersiana. Natural Product Communications, 1, 961-968.
https://doi.org/10.1177/1934578X0600101109
[6] Kuroda, M., Uchida, S., Watanabe, K. and Mimaki, Y. (2009) Chromones from the Tubers of Eranthis Cilicica and Their Antioxidant Activity. Phytochemistry, 70, 288-293.
https://doi.org/10.1016/j.phytochem.2008.12.002
[7] Sandhya, M.B. (2007) Synthesis, Characterization and Pharmacological Activities of Coumarin Devivatives. International Journal of Chemical and Pharmaceutical Sciences, 11, 16-25.
[8] Park, H.J., Kim, J.N., Yoo, H.-J., Wee, K.-R., Kang, S.O., Cho, D.W. and Yoon, U.C. (2013) Rational Design, Synthesis, and Characterization of Deep Blue Phosphorescent Ir(III) Complexes Containing (4’-Substituted-2’-Pyridyl)-1,2,4-Triazole Ancillary Ligands. The Journal of Organic Chemistry, 78, 8054-8064.
https://doi.org/10.1021/jo4012514
[9] Zhang, C., Liang, Z., Jia, X., Wang, M., Zhang, G. and Hu, M.-L. (2020) A Practical Base Mediated Synthesis of 1,2,4-Triazoles Enabled by a Deamination Annulation Strategy. Chemical Communications, 56, 14215-14218.
https://doi.org/10.1039/D0CC05828A
[10] Yan, M., Ma, R., Chen, R., Wang, L., Wang, Z. and Ma, Y. (2020) Synthesis of 1,2-Dihydro-1,3,5-Triazine Derivatives via Cu(ii)-Catalyzed C(sp3)–H Activation of N,N-Dimethylethanolamine with Amidines. Chemical Communications, 56, 10946-10949.
https://doi.org/10.1039/D0CC03820B
[11] Zhang, L., Tang, D., Gao, J., Wang, J., Wu, P., Meng, X. and Chen, B. (2016) Direct Access to 1,3,5-Trisubstituted 1H-1,2,4-Triazoles from N-Phenylbenzamidines via Copper-Catalyzed Diamination of Aryl Nitriles. Synthesis, 48, 3924-3930.
https://doi.org/10.1055/s-0035-1562490
[12] Liew, S.K., Holownia, A., Tilley, A.J., Carrera, E.I., Seferos, D.S. and Yudin, A.K. (2016) A Study of Boratriazaroles: An Underdeveloped Class of Heterocycles. The Journal of Organic Chemistry, 81, 10444-10453.
https://doi.org/10.1021/acs.joc.6b01565
[13] Agisho, H.A., Esatu, H., Hairat, S. and Zaki, M. (2020) TBHP/TBAI–Mediated Simple and Efficient Synthesis of 3,5-Disubstituted and 1,3,5-Trisubstituted 1H-1,2,4-Triazoles via Oxidative Decarbonylation of Aromatic Aldehydes and Testing for Antibacterial Activities. Tetrahedron Letters, 61, Article ID: 151989.
https://doi.org/10.1016/j.tetlet.2020.151989
[14] Li, C.-J. (2009) Cross-dehydrogenative coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. Accounts of Chemical Research, 42, 335-344.
https://doi.org/10.1021/ar800164n
[15] Yan, M., Kawamata, Y. and Baran, P.S. (2017) Synthetic Organic Electrochemical Methods since 2000: On the Verge of a Renaissance. Chemical Reviews, 117, 13230-13319.
https://doi.org/10.1021/acs.chemrev.7b00397
[16] Xiong, P. and Xu, H.-C. (2019) Chemistry with Electrochemically Generated N-Centered Radicals. Accounts of Chemical Research, 52, 3339-3350.
https://doi.org/10.1021/acs.accounts.9b00472
[17] Zeng, L., Li, J., Gao, J., Huang, X., Wang, W., Zheng, X., Gu, L., Li, G., Zhang, S. and He, Y. (2020) An Electrochemical Oxidative Multicomponent Cascade Annulation of Ketones and Amines Used to Produce Imidazoles. Green Chemistry, 22, 3416-3420.
https://doi.org/10.1039/D0GC00375A