理论数学  >> Vol. 2 No. 1 (January 2012)

分数阶微分方程的矩阵级数解
Metric Series Solutions of Fractional Differential Equations

DOI: 10.12677/pm.2012.21004, PDF, HTML, 下载: 2,936  浏览: 8,470  国家自然科学基金支持

作者: 万桂华, 张淑琴, 苏新卫*

关键词: Mittage-Leffler型函数矩阵级数分数阶微分方程
Mittage-Leffler Type Functions; Metric Series; Fractional Differential Equations

摘要: 在本文中,我们引进了n阶矩阵的Mittage-Leffler型级数。我们得到了分数阶微分方程组初值问题的Mittage-Leffler型矩阵级数解。而且,我们得到了分数阶微分方程组的用Mittage-Leffler型矩阵级数所表示的基解矩阵。
Abstract: In this paper, we introduce a Mittage-Leffler type series for metric of n order. We obtain Mittage- Leffler type metric series solutions of initial value problems for fractional differential equations system. Fur- ther, we obtain fundamental solution metric, which are denoted by Mittage-Leffler type metric series.

文章引用: 万桂华, 张淑琴, 苏新卫. 分数阶微分方程的矩阵级数解[J]. 理论数学, 2012, 2(1): 17-22. http://dx.doi.org/10.12677/pm.2012.21004

参考文献

[1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006.
[2] K. Miller, B. Ross. An introduction to the fractional calculus and fractional differential equations. New York: Wiley, 1993.
[3] I. Podlubny. Fractional differential equations. San Diego: Academic Press, 1999.
[4] J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado. Advances in fractional calculus: Theoretical developments and applications in physics and engineering. Berlin: Springer, 2007.
[5] R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 2000, 339(1): 1-77.
[6] 代群, 李辉来. 几类分数阶微分方程解的结构[J]. 吉林大学学报, 2011, 49(3): 580-586.
[7] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高等教育出版社, 2004.
[8] 张锦炎. 常微分方程几何理论与分支问题[M]. 北京: 北京大学出版社, 2000.
[9] 王萼芳. 高等代数教程[M]. 北京: 清华大学出版社, 1997.