|
[1]
|
Maness, P.C., Yu, J., Eckert, C. and and Ghirardi, M.L. (2009) Photobiological Hydrogen Production: Efforts to Scale up the Capacity of Green Algae and Cyanobacteria to Use Sunlight to Convert Water into Hydrogen Gas for Energy Use. Microbe, 4, 275-280. [Google Scholar] [CrossRef]
|
|
[2]
|
Netravali, A.N. and Chabba, S. (2003) Composites Get Greener. Materials Today, 6, 22-29. [Google Scholar] [CrossRef]
|
|
[3]
|
Rittmann, B.E. (2008) Opportunities for Renewable Bioenergy Using Microorganisms. Biotechnology and Bioengineering, 100, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dismukes, C.G., Carrieri, D., Bennette, N., Ananyev, G.M. and Posewitz, M.C. (2008) Aquatic Photorophs: Efficient Alternatives to Land-Based Crops for Biofuels. Current Opinion in Biotechnology, 19, 235-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae; Close-Out Report. National Renewable Energy Lab, Golden, 2. [Google Scholar] [CrossRef]
|
|
[7]
|
Edwards, M. (2010) Algal Species Selection.
https://algaeindustrymagazine.com/algae-101-part-seven-algal-species-selection/
|
|
[8]
|
Da Rós, P.C.M., Silva, C.S.P., Silva-Stenico, M.E. and Fiore, M.F. and de Castro, H.F. (2012) Microcystis aeruginosa Lipids as Feedstock for Biodiesel Synthesis by Enzymatic Route. Journal of Molecular Catalysis B: Enzymatic, 84, 177-182. [Google Scholar] [CrossRef]
|
|
[9]
|
Babu, B. and Wu, J.T. (2008) Production of Natural Butylated Hydroxytoluene as an Antioxidant by Freshwater Phytoplankton. Journal of Phycology, 44, 1447-1454. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mandal, S. and Mallick, N. (2009) Microalga Scenedesmus obliquus as a Potential Source for Biodiesel Production. Applied Microbiology and Biotechnology, 84, 281-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, X., Hu, H.-Y., Yang, J. and Wu, Y.-H. (2010) Enhancement Effect of Ethyl-2-Methyl Acetoacetate on TAGs Production by a Freshwater Microalga, Scenedesmus sp. LX1. Biore-source Technology, 101, 9819-9821. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ren, H.Y., Liu, B.F., Ma, C., Zhao, L. and Ren, N.-Q. (2013) A New Lipid-Rich Microalga Scenedesmus sp. Strain R-16 Isolated Using Nile Red Staining: Effects of Carbon and Ni-trogen Sources and Initial pH on the Biomass and Lipid Production. Biotechnology for Biofuels, 6, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jaeger, L., Verbeek, R.E.M., Draaisma, R.B., Martens, D.E., Springer, J., Eggink, G., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedes-mus obliquus: (I) Mutant Generation and Characterization. Biotechnology for Biofuels, 7, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Breuer, G., de Jaeger, L., Artus, V.P.G., Martens, D.E, Springer, J., Draaisma, R.B., et al. (2014) Superior Triacylglycerol (TAG) Accumulation in Starchless Mutants of Scenedesmus obliquus: (II) Evaluation of TAG Yield and Productivity in Controlled Photobioreactors. Biotechnology for Biofuels, 7, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102, 100-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, X., Han, X. and Wu, Q. (2007) Large-Scale Biodiesel Production from Microalga Chlorella protothecoides through Heterotrophic Cultivation in Bioreactors. Biotechnology and Bioengineering, 98, 764-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hellingwerf, K.J. and de Mattos, M.J.T. (2009) Alternative Routes to Biofuels: Light-Driven Biofuel Formation from CO2 and Water Based on the ‘Photanol’ Approach. Journal of Biotechnology, 142, 87-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Deng, M.D. and Coleman, J.R. (1999) Ethanol Synthesis by Genetic Engineering in Cyanobacteria. Applied and Environmental Microbiology, 65, 523-528. [Google Scholar] [CrossRef]
|
|
[19]
|
Polle, J.E.W., Kanakagiri, S., Jin, E.S., Masuda, T. and Melis, A. (2002) Truncated Chlorophyll Antenna Size of the Photosystems—A Practical Method to Improve Microalgal Productivity and Hydrogen Production in Mass Culture. International Journal of Hydrogen Energy, 27, 11-12. [Google Scholar] [CrossRef]
|
|
[20]
|
Cazzola, P. (2010) Algae for Biofuels Production Process Description, Life Cycle Assessment and Some Information on Cost. Organisation for Economic Co-Operation and Development (OECD) and International Energy Agency (IEA), Paris.
|
|
[21]
|
Saranya, A., Prabavathi, P. and Sudha, M. (2015) Perspectives and Advances of Microalgae as Feedstock for Biodiesel Production. International Journal of Cur-rent Microbiology and Applied Sciences, 4, 766-775.
https://www.ijcmas.com/vol-4-9/A.%20Saranya,%20et%20al.pdf
|
|
[22]
|
Yang, Z., Guo, R., Xu, X., Fan, X. and Li, X. (2011) Thermo-Alkaline Pretreatment of Lipid-Extracted Microalgal Biomass Residues Enhances Hydrogen Production. Journal of Chemical Technology and Biotechnology, 86, 454-460. [Google Scholar] [CrossRef]
|
|
[23]
|
Anastasios, M. (2002) Green Alga Hydrogen Production: Progress, Challenges and Prospects. International Journal of Hydrogen Energy, 27, 1217-1228. [Google Scholar] [CrossRef]
|
|
[24]
|
Chochois, V., Dauvillee, D. and Beyly, A. (2009) Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and Independent Pathways Differ in Their Requirement for Starch Metabolism. Plant Physiology, 151, 631-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Panti, L., Chávez, P., Robledo, D. and Patiño, R. (2007) A Solar Photobioreactor for the Production of Biohydrogen from Microalgae. SPIE Optics + Photonics for Sustainable Energy, San Diego, Article ID: 66500Z. [Google Scholar] [CrossRef]
|
|
[26]
|
Hirano, A., Ueda, R., Hirayama, S. and Ogushi, Y. (1997) CO2 Fixation and Ethanol Production with Microalgal Photosynthesis and Intracellular Anaerobic Fermentation. Energy, 22, 137-142. [Google Scholar] [CrossRef]
|
|
[27]
|
Ho, S.-H., Huang, S.-W. and Chen, C.-Y. (2013) Bioethanol Production Using Carbohydrate-Rich Microalgae Biomass as Feedstock. Bioresource Technology, 135, 191-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Golueke, C.G. and Oswald, W.J. (1959) Biological Conversion of Light Energy to the Chemical Energy of Methane. Journal of Applied Microbiology, 7, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Salim, S., Bosma, R., Verrmue, M.H. and Wijffels, R.H. (2011) Harvesting of Microalgae by Bioflocculation. Journal of Applied Phycology, 23, 849-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., et al. (2012) Evaluation of Flocculation Induced by pH Increase for Harvesting Microalgae and Reuse of Flocculated Medium. Bioresource Technology, 110, 496-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, J., Zhu, Y., Tao, Y., Zhang, Y., Li, A., Li, T., et al. (2013) Freshwater Microalgae Harvested via Flocculation Induced by pH Decrease. Biotechnology for Biofuels, 6, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bligh, E.G. and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. (2006) Commercial Applications of Microalgae. Journal of Bioscience and Bioengineering, 101, 87-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Benemanm, J.R. (2008) Overview: Algae Oil to Biofuel (Annotated Presentation). Workshop: Algal Oil Jet Fuel Production, Arlington, 19 February 2008, 1-63.
|
|
[35]
|
Monteiro, C.M., Cas-tro, P.M.L. and Xavier Malcata, F. (2009) Use of the Microalga Scenedesmus obliquus to Remove Cadmium Cations from Aqueous Solutions. World Journal of Microbiology and Biotechnology, 25, 1573-1578. [Google Scholar] [CrossRef]
|
|
[36]
|
Ruiz-Marin, A., Canedo-Lopez, Y., Campos-Garcia, S., Sabido-Perez, M.Y. and Zavala-Loria, J. (2013) Biodegradation of Wastewater Pollutants by Activated Sludge Coimmobilized with Scenedesmus obliquus. Agrociencia, 47, 429- 441.
|
|
[37]
|
Hodaifa, G., Martnez, M.E. and Sanchez, S. (2009) Daily Doses of Light in Relation to the Growth of Scenedesmus obliquus in Diluted Three-Phase Live Mill Wastewater. Journal of Chemical Technology & Biotechnology, 84, 1550- 1558. [Google Scholar] [CrossRef]
|
|
[38]
|
Zhang, T.Y., Wu, Y.H. and Hu, H.Y. (2014) Domestic Wastewater Treatment and Biofuel Production by Using Microalga Scenedesmus sp. ZTYI. Water Science and Technology, 69, 2492-2496. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mata, T.M., Martins, A.A. and Caetano, N.S. (2009) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232. [Google Scholar] [CrossRef]
|
|
[40]
|
Luisa, G. and Cristina, O.A. (2009) Microalgae as a Raw Material for Biofuels Production. Journal of Industrial Microbiology and Biotechnology, 36, 269-274.
|
|
[41]
|
Sivakumar, G., Vail, D.R., Xu, J., Burner, D.M., Lay Jr., J.O., Ge, X. and Weathers, P.J. (2009) Bioethanol and Biodiesel: Altermative Liqnid Fuels for Future Generations. Engineering in Life Sciences, 10, 8-18. [Google Scholar] [CrossRef]
|