|
[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vuong, H.G., Nguyen, T.Q., Nguyen, H.C., et al. (2020) Efficacy and Safety of Crizotinib in the Treatment of Advanced Non-Small-Cell Lung Cancer with ROS1 Rearrangement or MET Alteration: A Systematic Review and Meta-Analysis. Targeted Oncology, 15, 589-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature, 511, 543-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhou, C. and Yao, L.D. (2016) Strategies to Improve Outcomes of Patients with EGRF-Mutant Non-Small Cell Lung Cancer: Review of the Literature. Journal of Thoracic Oncology, 11, 174-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Villanueva, N. and Bazhenova, L. (2018) New Strategies in Immunotherapy for Lung Cancer: Beyond PD-1/PD-L1. Therapeutic Advances in Respiratory Disease, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Riaz, S.P., Luchtenborg, M., Coupland, V.H., et al. (2012) Trends in Incidence of Small Cell Lung Cancer and All Lung Cancer. Lung Cancer, 75, 280-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ni, M., Shi, X.L., Qu, Z.G., et al. (2015) Epithelial Mesenchymal Transition of Non-Small-Cell Lung Cancer Cells A549 Induced by SPHK1. Asian Pacific Journal of Tropical Medicine, 8, 142-146. [Google Scholar] [CrossRef]
|
|
[8]
|
Ayyildiz, D. and Piazza, S. (2019) Introduction to Bioinformatics. Methods in Molecular Biology, 1986, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Langfelder, P. and Horvath, S. (2008) WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinformatics, 9, Article No. 559. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, B. and Horvath, S. (2005) A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology, 4, Article 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Segundo-Val, I.S. and Sanz-Lozano, C.S. (2016) Introduction to the Gene Expression Analysis. Methods in Molecular Biology, 1434, 29-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Colaprico, A., Silva, T.C., Olsen, C., et al. (2016) TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Research, 44, e71. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics, 26, 139-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, C.C.N., Li, C.Y., Cai, J.H., et al. (2019) Identification of Prognostic Candidate Genes in Breast Cancer by Integrated Bioinformatic Analysis. Journal of Clinical Medicine, 8, 1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ritchie, M.E., Phipson, B., Wu, D., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, e47. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yu, G., Wang, L.G., Han, Y., et al. (2012) Cluster Profiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS, 16, 284-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nagy, J., Per, B., Trinn, C., et al. (1988) Incidence of IgA (Monomer-Dimer, IgA1-IgA2) and IgG Producing Cells in the Tonsils of Patients with IgA Nephropathy. Orvosi Hetilap, 129, 1481-1485.
|
|
[18]
|
Shannon, P., Markiel, A., Ozier, O., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chin, C.H., Chen, S.H., Wu, H.H., et al. (2014) cytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome. BMC Systems Biology, 8, S11. [Google Scholar] [CrossRef]
|
|
[20]
|
Pierre, S., Eschenhagen, T., Geisslinger, G., et al. (2009) Capturing Adenylyl Cyclases as Potential Drug Targets. Nature Reviews Drug Discovery, 8, 321-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, C., Xie, J., Lu, Z., et al. (2015) ADCY7 Supports Development of Acute Myeloid Leukemia. Biochemical and Biophysical Research Communications, 465, 47-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hong, S.H., Goh, S.H., Lee, S.J., et al. (2013) Upregulation of Adenylate Cyclase 3 (ADCY3) Increases the Tumorigenic Potential of Cells by Activating the CREB Pathway. Oncotarget, 4, 1791-1803. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xiang, T.X., Yuan, Y., Li, L.L., et al. (2013) Aberrant Promoter CpG Methylation and Its Translational Applications in Breast Cancer. Chinese Journal of Cancer, 32, 12-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fan, Y., Mu, J., Huang, M., et al. (2019) Epigenetic Identification of ADCY4 as a Biomarker for Breast Cancer: An Integrated Analysis of Adenylate Cyclases. Epigenomics, 11, 1561-1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fruhwald, M.C., O’Dorisio, M.S., Fleitz, J., et al. (1999) Vasoactive Intestinal Peptide (VIP) and VIP Receptors: Gene Expression and Growth Modulation in Medulloblastoma and Other Central Primitive Neuroectodermal Tumors of Childhood. International Journal of Cancer, 81, 165-173. [Google Scholar] [CrossRef]
|
|
[26]
|
Collado, B., Carmena, M.J., Sanchez-Chapado, M., et al. (2005) Expression of Vasoactive Intestinal Peptide and Functional VIP Receptors in Human Prostate Cancer: Antagonistic Action of a Growth-Hormone-Releasing Hormone Analog. International Journal of Oncology, 26, 1629-1635. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Goursaud, S., Pineau, N., Becq-Giraudon, L., et al. (2005) Human H9 Cells Proliferation Is Differently Controlled by Vasoactive Intestinal Peptide or Peptide Histidine Methionine: Implication of a GTP-Insensitive Form of VPAC1 Receptor. Journal of Neuroimmunology, 158, 94-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Abad, C., Jayaram, B., Becquet, L., et al. (2017) Erratum to: VPAC1 Receptor (Vipr1)-Deficient Mice Exhibit Ameliorated Experimental Autoimmune Encephalomyelitis, with Specific Deficits in the Effector Stage. Journal of Neuroinflammation, 14, 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, L., Yu, Z. and Zhao, B. (2019) Mechanism of VIPR1 Gene Regulating Human Lung Adenocarcinoma H1299 Cells. Medical Oncology, 36, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xu, H., Zhang, B., Yang, Y., et al. (2020) LncRNA MIR4435-2HG Potentiates the Proliferation and Invasion of Glioblastoma Cells via Modulating miR-1224-5p/TGFBR2 Axis. Journal of Cellular and Molecular Medicine, 24, 6362-6372. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yuan, J., Yi, K. and Yang, L. (2020) TGFBR2 Regulates Hedgehog Pathway and Cervical Cancer Cell Proliferation and Migration by Mediating SMAD4. Journal of Proteome Research, 19, 3377-3385. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, Y., Qiao, L., Zang, Y., et al. (2020) Circular RNA FOXO3 Suppresses Bladder Cancer Progression and Metastasis by Regulating MiR-9-5p/TGFBR2. Cancer Management and Research, 12, 5049-5056. [Google Scholar] [CrossRef]
|
|
[33]
|
Kim, J.H., Jang, Y.S., Eom, K.S., et al. (2007) Transforming Growth Factor beta1 Induces Epithelial-to-Mesenchymal Transition of A549 Cells. Journal of Korean Medical Science, 22, 898-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Keklikoglou, I., Koerner, C., Schmidt, C., et al. (2012) MicroRNA-520/373 Family Functions as a Tumor Suppressor in Estrogen Receptor Negative Breast Cancer by Targeting NF-κB and TGF-β Signaling Pathways. Oncogene, 31, 4150-4163. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Harazono, Y., Muramatsu, T., Endo, H., et al. (2013) miR-655 Is an EMT-Suppressive microRNA Targeting ZEB1 and TGFBR2. PLoS ONE, 8, e62757. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Li, G., Wu, F., Yang, H., et al. (2017) MiR-9-5p Promotes Cell Growth and Metastasis in Non-Small Cell Lung Cancer through the Repression of TGFBR2. Biomedicine & Pharmacotherapy, 96, 1170-1178. [Google Scholar] [CrossRef] [PubMed]
|