经皮二尖瓣修复术研究进展
Percutaneous Mitral Valve Repair: Recent Progress in Research
DOI: 10.12677/ACM.2021.117466, PDF, HTML, XML, 下载: 333  浏览: 624  科研立项经费支持
作者: 邓 浩, 池一凡*:青岛大学附属青岛市海慈医院,山东 青岛;孙萌萌:青岛大学附属青岛市市立医院,山东 青岛
关键词: 二尖瓣反流经导管二尖瓣置换术二尖瓣修复术二尖瓣环Mitral Regurgitation Transcatheter Mitral Valve Replacement Mitral Valve Repair Mitral Annulus
摘要: 二尖瓣反流(Mitral regurgitation, MR)是最为常见的心脏瓣膜病,随着人口老龄化的加剧,患病率也越来越高,手术方式也有了巨大的变革。经皮二尖瓣修复术(Percutaneous mitral valve repair, PMVR)是目前新兴的治疗方式,在医疗领域受到越来越多的关注。PMVR不破坏二尖瓣的天然生理解剖,具有较高的安全性和可行性。但由于二尖瓣解剖结构的复杂,需要可行性较高的二尖瓣修复系统。本文介绍各种二尖瓣修复的新兴治疗系统。
Abstract: Mitral regurgitation (MR) is the most common valvular heart disease, and its prevalence increases with age, surgical procedures have changed dramatically. Percutaneous mitral valve repair (PMVR) is a new treatment method and has attracted more and more attention in the medical field. PMVR does not disrupt the natural anatomy of the mitral valve, and has higher safety and feasibility. However, due to the complex anatomical structure of the mitral valve, a feasible mitral valve repair system is needed. In this paper, various new therapeutic systems for MVR are introduced.
文章引用:邓浩, 孙萌萌, 池一凡. 经皮二尖瓣修复术研究进展[J]. 临床医学进展, 2021, 11(7): 3209-3217. https://doi.org/10.12677/ACM.2021.117466

1. 引言

二尖瓣疾病在成人瓣膜疾病中的发生率较高 [1] [2]。其中以MR比较常见,约三分之一的MR病例是由退行性变引起的 [3]。患病率在75岁或以上的成年人中高达十分之一 [2] [4],并随着年龄的增长而增加。以往MR多采用瓣膜置换的方式治疗,自1984年日本学者Inoue等 [5] 首次报道经皮球囊二尖瓣成形术(Percutaneous balloon mitral valvuloplasty, PBMV)后,PBMV便成为形态学上适合二尖瓣修复术(Mitral valve repair, MVR)患者的最佳选择 [6]。经皮修复术有着侵入性低和加速康复的优点,并且MVR尊重瓣膜的天然解剖,安全性较高 [7]。近期,根据二尖瓣解剖及病理生理学等特点,发明了大量经皮瓣膜,未来在MR的治疗中,PMVR将发挥重要的作用。但是在高危患者或功能性二尖瓣反流(Functional mitral regurgitation, FMR)的患者中有着较高的死亡率 [8],并且对左心室射血分数(LEVF)有着在较大的影响 [9]。由于种种原因,需要新兴的低风险的经皮治疗策略来改善退行性二尖瓣反流(Degenerative mitral regurgitation, DMR)及FMR,同时最大限度的减少相关并发症。本文将综述MVR的未来及治疗MR的不同装置的最新研究进展。

2. 二尖瓣修复术的局限性

自第一次二尖瓣环成形术以来,已经引入了多种修复技术(包括二尖瓣小叶装置、二尖瓣综合成形术和经皮二尖瓣环成形术) [10]。然而在大多情况下,由于临床上操作复杂、预期结果不满意等原因,使得新兴技术难以使用,主要面临的困难有如下几点:

1) 导致MR的机制众多,原因复杂。因此,针对单个目标的单一修复系统不太可能达到最佳的治疗效果。在外科治疗中通常将各种不同的瓣叶成形术与瓣环成形术相互结合,以将瓣环的二次扩大和反流复发的风险降到最低 [11]。PMVR作为一项较单一的修复技术,缺乏对MR远期预后的长期随访,它不能完全预测降低MR的程度且不能保证消除MR [12]。国际上近期发表的几例病例报道显示了同时置入MitraClip和Cardioband的经皮瓣环成形术治疗MitraClip术后MR复发的可行性 [13] [14] [15],然而由于病例数量不足,需要更多的数据来证实。

2) 二尖瓣环是一个高度动态的鞍形不对称结构,这给瓣环装置的定位和尺寸的确定带来困难。因此经皮瓣环成形术系统的发展离不开解决上述复杂二尖瓣环构造的设计阻碍。圆形二尖瓣环与天然二尖瓣环解剖上存在不匹配的危险,这可能增加瓣环装置和二尖瓣环之间的张力,从而导致晚期二尖瓣环的脱落 [16]。

3) 一定比例的二尖瓣解剖结构的特点导致它并不是修复术的理想者,虽然经导管二尖瓣置换术(Transcatheter mitral valve repairmen, TMVR)可以作为选择,但是在风湿和钙化引起的二尖瓣反流的例子中,经导管二尖瓣介入治疗仍存在争议 [17]。这可能与修复和置换术后导致瓣膜周围渗漏和左心室流出道梗阻风险增加有关。

3. 二尖瓣修复术可行性

在FMR和DMR的治疗中,TMVR已经展示了一定的优势 [18] [19]。未来在MR的治疗中,有几点将证明经皮二尖瓣环成形术的巨大作用:

1) 经导管的瓣膜置换装置和经皮的瓣环成形装置必须适应二尖瓣瓣环,主动脉瓣多采用纤维环 [20],二尖瓣环则不能使用刚性锚状结构。二尖瓣环在后方嵌入左心房与左心室的连接处,前方则是主动脉–二尖瓣幕,这是一张刚性有限的动态结构。由于这种原因,装置的固定有很大的困难,且有干扰和压迫主动脉装置的风险。研究显示,在6个月的随访过程中,TMVR后瓣膜移位、变形、侵蚀等并发症的风险约为4.5% [21],理论上这些并发症在MVR中不存在。在一项TMVR的早期研究中,1/8的患者出现急性LVOT梗阻 [21] [22] [23];研究表明,对于左心室流出道(LVOT)面积 < 1.7 cm2的患者,TMVR术后梗阻的风险将大大增加,因此对于此类患者应该考虑行MVR治疗而不是置换 [24]。PMVR的装置尊重二尖瓣解剖结构,且尺寸较小,容易经心尖入路到达其解剖位置,可见对于LVOT梗阻的患者来说不是问题。但在低射血分数的患者中,MVR会导致心室壁的变薄及心尖疤痕的产生,宜选择完全经皮–股动脉–中隔静脉途径;但是与TMVR相比,PMVR可能会导致医源性室间隔缺损,因此对输送系统的要求将更加严格 [25]。

2) 二尖瓣生物瓣膜的结构性瓣膜退化比主动脉瓣更加常见,尤其在年轻个体中更明显 [26];与经导管主动脉瓣置换术(Transcatheter aortic valve implantation, TAVI)患者相比,接受TMVR手术的患者年轻更轻,预期寿命更长 [27],因此装置的耐久性是一大关注点,而用于MVR的装置基本可以持续数十年不会出现退化或侵蚀的风险。

3) TMVR装置尺寸较大及大量的外源物质大大的增加了激活凝血系统级联反应的概率,导致血栓形成 [28],这是由于二尖瓣假体的心房部分暴露在低心房压力之下,导致血液停滞,继而致瓣膜血栓形成。Sorajja 等 [21] 初步可行性研究经验表明,100例患者TMVR术后1年装置血栓形成率为6%。相反,PMVR更具有生理意义:植入的装置体积及表面积相对较小,降低了血栓形成的风险,术后无需终生抗凝,且保留了自身瓣膜结构,因此瓣膜相关并发症的发生率等较低 [29]。

4) 瓣膜置换术后常见的并发症是瓣膜周围渗漏(Paravalvular leak, PVL) [30] [31],约3%的患者会出现亚临床溶血 [32]、心力衰竭或两者兼有的症状和体征 [33]。在非钙化性MR的病例中,30天内中重度PVL的发生率可达13.8% [34]。相反,在MVR中,不破坏二尖瓣原有解剖结构,瓣环相对完整,理论上,不会发生PVL及溶血反应。

4. 二尖瓣修复术的最新设备及临床研究

1) The Millipede IRIS annuloplasty ring:这是一种完整的半刚性的环,由激光切割和热定型镍钛合金制成。这个系统有8个螺旋不锈钢锚,通过滑动套环和镍钛合金框架连接,并预装在装置的底座上,每个环可以独立旋转且可逆的连接到二尖瓣组织上,以便制定锚定的尺寸和位置。如果初始位置不理想,每个锚可以缩回或拧松,并且移动至合适的位置。该装置上有8个滑动套环,可以单独的推进或缩回。拉紧时,每个套环将相邻的两个螺旋锚拉近。每个套环原理上缩短了环的相关部分,可以实现环的周长和直径的减小。通过有选择性的收紧螺旋锚和滑动套环,就可以进行有针对性的瓣环成形术,使瓣环最扩张的部分得以缩小。该装置既可以通过直视下外科手术植入,也可以经心房植入,也可以经皮植入。在最初的临床报告中,7名患者被纳入:4例采用开放手术方式;3例采用经导管二尖瓣虹膜环成形术,并且都接受了IRIS环。该装置的经皮植入在荧光透视和超声心动图下进行监测,心内超声心动图的辅助可直观的显示二尖瓣环和虹膜锚的详细位置。术后所有医源性房间隔缺损都采用10毫米Amplatzer间隔封堵器封堵。所有病例都获得了成功,作者没有报道任何设备相关的程序性死亡、中风或心肌梗塞。结果显示术后30天二尖瓣球囊直径从基线的38.0 ± 4.1毫米减少到25.9 ± 4.9毫米,平均球囊直径减少31.8%,MR表现出从基线的3或4+下降到0或1+ [35] [36]。可见使用IRIS系统是一项可行的临床试验。

2) Accuching GDS:该装置是一个直接的心室成形术系统。作用位点主要在亚环形的左心室心肌上,该系统由一个输送导管、一个模块化导管(MGT)、一个锚输送导管和12~16个镍钛诺锚组成。它们通过超高分子量聚乙烯收紧连接在一起,以产生一定的张力。近端和远端锚定件与镍钛合金力分布构件间隔开。锚通过心室游离壁二尖瓣后叶下的一个弓形从连合部传递到连合部。当装置到达亚环形空间时,MGT被定向在心肌的方向,并逐渐撤回,以便于锚通过具有单个窗口的内部隧道递送。一旦所有锚被释放,使用收紧和锁定导管将张力施加到收紧索上。然后,在移除MGT和引导导管 [37] 之前,利用切割导管来切割收紧线缆。这个装置减少了无间隔壁的尺寸,将乳头肌和二尖瓣小叶拉的很近,并缩小了左心室容量而不影响心肌。该装置可根据左心室壁厚度和环下空间解剖进行定制。Accuchinch GDS已经在16名患者中进行了尝试,2例因其先天解剖因素没有放置导管的适当位置而失败,2例因心包积液和中风而死亡,其他12例6个月的超声心动图数据显示二尖瓣返流体积从55.4 ± 5.1 ml减少到34.5 ± 3.5 ml,并呈现左心室进行性反向重塑的趋势。该装置的功效和安全性正在不同情况下进行调查 [38]。

3) Mitral Loop Cerclage:经导管二尖瓣瓣环环扎成形术是一种间接瓣环成形术系统,由不锈钢张力元件和冠状动脉保护系统组成。张力元件的两个末端使用延伸至左锁骨下静脉的桥接装置连接。二尖瓣环被环张力元件所环绕,该环可被拉紧,从而导致二尖瓣环的压缩和二尖瓣小叶接合的改善。可调节的血管外锁固定在锁骨下窝的皮下,并具有连接张力元件和桥的功能,从而允许在超声心动图监测下调节张力 [39]。手术采用经左锁骨下静脉和股静脉进入,环扎术是导丝进入冠状窦和心脏大静脉,穿过室间隔从前室间静脉进入右心室,用一个独特设计的圈套器钩住并拉回下腔静脉,并形成一个可以收紧以压缩二尖瓣环的环。回旋支分支的压迫被一个弯曲的小管子阻止,该管子在冠状动脉上形成一个“桥”,以防止对间隔三尖瓣叶和传导系统的任何损伤。第一次使用二尖瓣环环成形术5次中有4次成功,3例术后保留了左室射血分数 [40]。6个月时,二尖瓣返流体积由54.8 mm至18.5 ± 4.1 mm。左心室舒张末期容积由140 ± 62.5 ml至102.6 ± 35.7 ml。作者证明了二尖瓣环环扎术在人类中的早期临床可行性 [41]。

4) MVRx ARTO:这是一个不闭合的间接瓣环成形系统。该系统由两个磁环组成,放置在心脏大静脉和左心房A2/P2扇形水平。当两个磁环相互靠近时,特定的导丝穿过两个磁体,从心脏大静脉到左心房,对准两个导管,通过一系列的导线和导管交换,将一个3厘米的冠状动脉锚置入冠状窦,并通过一条长度可调的缝线与一个房间隔锚相连。然后调整缝线长度,施加适当的压力以缩短二尖瓣环的瓣口直径。二尖瓣修复临床试验(MAVERIC)中报道了11名接受MVRx ARTO系统治疗的患者,30天结果显示有效反流口面积从30.3 ± 11.1 mm2减少到13.5 ± 7.1 mm2,反流容积从45.4 ± 15.0 ml减少到19.5 ± 10.2 ml。二尖瓣环前后径从45.0 ± 3.3 mm减少到38.7 ± 3.0 mm [42]。其中出现了两个不良事件:1例心包积液需要手术引流,1例出现无症状装置移位。初始数据较为可观,但在安全性和有效性方面,需要更大规模的长期随访研究。

5) The MitraClip XTR (MC XTR):这是一个新版本的MitralClip夹子,由一个24Fr可操纵的输送导管和一个导向夹子输送系统(CDS)组成。整个系统的工作长度增加了1.5 cm,夹子夹住宽度为5 mm,输送鞘和硫化镉之间的过渡区得以加强,以提高硫化镉旋转过程中的稳定性。可转向套筒对M旋钮的敏感性有所提升,锁线结构构能够在解锁位置运行。最新发表的107名患者接受MC XTR治疗的多中心研究表93%的患者MR ≤ 2+和77%的患者MR ≤ 1+的手术成功率较高 [7]。尽管需要进一步临床评估,但对于瓣膜面积/梯度处于边缘的患者,不同夹子的大小可能是一个有价值的治疗选择。

6) Mitral Butterfly:蝶式修复包括从脱垂边缘进行三角形切除和对环进行反向三角形切除的组合,以消除冗余 [43] [44]。该系统由一个带有聚四氟乙烯纱线的镍钛合金支架和一个模拟人造乳头肌的摆臂组成。使用可操纵的导管可以顺行和逆行进行植入。一旦释放,蝶形系统包含通过聚四氟乙烯纱的后脱垂部分。该技术适用于大于20毫米高度后叶脱垂引起的DMR,不会增加收缩期前运动的风险,能较精确控制小叶高度,而无需环形折叠 [45]。但对于没有多余组织的薄而短的下垂小叶段,它是不合适的 [44]。

7) Mitral Bridge:它由一个曲线镍钛合金带组成,覆盖有硅树脂包裹,两端有丝绒垫。临时二尖瓣桥横跨二尖瓣定位,在A2-P2节段水平连接前、后瓣叶,从而减小前后环形尺寸。预附在植入物上的输送手柄有助于将桥定位在环上,使弯曲面向心室腔。二尖瓣桥有五种间隔取向尺寸(22 mm、24 mm、26 mm、28 mm和30 mm)。起初在34例参与使用Mitral Bridge来治疗MR的观察性研究中,2年间,未发现中风或装置相关的不良事件,MR从3.32 ± 0.47降至0.50 ± 0.83,33例MR小于1+ [46] [47] [48]。

8) Neochord:一种新型经导管MVR技术,经心尖入路进行。在经食管超声引导下,在跳动的心脏上放置膨胀的聚四氟乙烯(e-PTFE)缝线作为新血管的替代物,而不需要体外循环 [49]。其学习曲线较短 [50] [51]。因此,自首次应用以来,已有1000多例 [52]。存在孤立的中央后叶脱垂或连枷的患者是Neochord植入的理想对象。而不适合相对较复杂的病变 [53]。根据测量,约有25%的DMR患者可以用Neochord装置进行有效的治疗 [54]。为了增加其治疗效果,可与其他经导管MVR装置协调应用,以取得更加有益的临床结果。

9) The Pipeline system:该系统是一个新开发的环下装置,理论上可执行腱索功能,经股动脉途径植入。输送导管到达左心室后,心室锚从导管展开并固定到心室游离壁,留下附接到心室锚的心室缝线。展开小叶棉条以将二尖瓣小叶固定到心室锚上。小叶缝合线固定在心室锚上,以限制小叶的偏移。该系统目前处于临床前研究阶段,动物模型展示了一定的可行性。

10) CardioMech:这是一种经导管二尖瓣腱索修复技术,针对于治疗因瓣叶脱垂的DMR患者。需要经股静脉–中隔穿刺到达左心房,人工将新腱索从小叶测锚定到心室壁。目前处于开发阶段,需要进行大量试验评估其安全性和可行性。

11) MitraClamp:二尖瓣环折叠术是一种新型无缝合瓣叶折叠装置,治疗二尖瓣瓣叶脱垂至MR者。装置有两个可以旋转的U形臂。在经导管进入左心室后,U形臂抓取小叶,以两种相反的方式旋转折叠小叶。该装置目前还处于开发阶段。

12) Polares:是介于置换和修复之间的新概念。其中包括植入一个后膨体聚四氟乙烯新小叶,以恢复与瓣膜天然前小叶的接合。该技术的发展还需经历大量的临床试验。

13) MitraMaze:一种接合增强装置,由一个柔性垫片、一个镍钛诺冠和一个定制的输送导管系统组成。经股动脉入路。在跳动的心脏中释放后,自膨胀植入物在左心房中无损伤地锚定,将镍钛合金冠留在心房中,并且可以填充间隔物以减小二尖瓣小叶之间的接合间隙。然而,该装置目前只在动物模型上证明可显著减少回流体积 [55]。

5. 二尖瓣修复术的未来展望

心内直视手术被认为是治疗严重MR的金标准,在大多数患者中可以获得良好的结果。然而,超过50%的重度MR患者由于围手术期风险增加而被排除在手术之外 [56]。Lee等 [57] 研究表明,在FMR的22例患者中,围手术期死亡率较高,可达6.6%至11.4%之间。然而,使用有效的经皮修复系统可以降低围手术期风险。最近发表的COAPT试验和MITRA-FR试验结果表明:在选定行MVR的患者中,术后1年的随访报告显示96.6%的患者无装置相关并发症 [58] [59],且可显著降低再住院率和2年随访的全因死亡率 [60] [61]。未来20年间,人口老龄化趋势会显著上升,MR的发生率也会显著上升。这一人群是高手术风险的人群,经皮治疗MR是一种更加有优势的方式 [62]。在风险较低的人群中TAVI已经被证实有较好的优越性,同样经皮治疗伴有显著MR的患者亦是一个理想的选择 [63] [64]。这些新兴装置的出现,以及未来相应技术的发展,MR治疗门槛会降低,将会有更多的患者受益。

6. 结论

经皮MVR是一个快速发展的领域,有很多新兴技术还处于不同的发展阶段。鉴于二尖瓣复杂的解剖及生理结构特点,经皮MVR可以保留其复杂内部结构的能力,这些装置将在MR的治疗中发挥重要的作用。大型临床队列研究将确定最能受益于经导管二尖瓣置换术的合适群体。未来,新修复装置的巨大突破,可以制定出根据特定解剖特征的治疗方式。

基金项目

青岛市卫计委课题(2020-WJZD036),山东省医药卫生科技发展计划(202003011043),山东省中医药科技项目(2020Z30)。

NOTES

*通讯作者。

参考文献

[1] Stewart, M.H. and Jenkins, J.S. (2016) The Evolving Role of Percutaneous Mitral Valve Repair. Ochsner Journal, 16, 270-276.
[2] Madesis, A., Tsakiridis, K., Zarogoulidis, P., et al. (2014) Review of Mitral Valve Insufficiency: Repair or Replacement. Journal of Thoracic Disease, 6, S39-S51.
[3] EnriquezSarano, M., Akins, C.W. and Vahanian, A. (2009) Mitral Regurgitation. The Lancet, 373, 1382-1394.
https://doi.org/10.1016/S0140-6736(09)60692-9
[4] DeBonis, M., Lapenna, E., LaCanna, G., et al. (2005) Mitral Valve Repair for Functional Mitral Regurgitation in End-Stage Dilated Cardiomyopathy: Role of the “Edge-to-Edge” Technique. Circulation, 112, I402-I408.
https://doi.org/10.1161/CIRCULATIONAHA.104.525188
[5] Inoue, K., Owaki, T., Nakamura, T., et al. (1984) Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter. The Journal of Thoracic and Cardiovascular Surgery, 87, 394-402.
https://doi.org/10.1016/S0022-5223(19)37390-8
[6] Eng, M.H., Salcedo, E.E., Quaife, R.A., et al. (2009) Implementation of Real Time Three-Dimensional Transesophageal Echocardiography in Percutaneous Mitral Balloon Valvuloplasty and Structural Heart Disease Interventions. Echocardiography, 26, 958-966.
https://doi.org/10.1111/j.1540-8175.2009.00928.x
[7] Khan, F., Winkel, M., Ong, G., et al. (2019) Percutaneous Mitral Edge-to-Edge Repair: State of the Art and a Glimpse to the Future. Frontiers in Cardiovascular Medicine, 6, 122.
https://doi.org/10.3389/fcvm.2019.00122
[8] Seeburger, J., Raschpichler, M., Garbade, J., et al. (2013) Minimally Invasive Mitral Valve Surgery in Octogenarians—A Brief Report. Annals of Cardiothoracic Surgery, 2, 765-767.
[9] Acker, M.A., Parides, M.K., Perrault, L.P., et al. (2014) Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation. The New England Journal of Medicine, 370, 23-32.
https://doi.org/10.1056/NEJMoa1312808
[10] Girdauskas, E., Disha, K., Secknus, M., et al. (2013) Increased Risk of Late Aortic Events after Isolated Aortic Valve Replacement in Patients with Bicuspid Aortic Valve Insufficiency versus Stenosis. The Journal of Cardiovascular Surgery (Torino), 54, 653-659.
https://doi.org/10.1093/ejcts/ezs137
[11] Zhong, Z., Yue, Z., Zhao, Z., et al. (2020) Long-Term Results of the Edge-to-Edge Repair for Failed Mitral Valve Repair as a Bailout Option. General Thoracic and Cardiovascular Surgery, 69, 32-37.
https://doi.org/10.1007/s11748-020-01433-z
[12] Meinertz, T. and Munzel, T. (2020) Kansas City Cardiomyopathy Quality Score Indicates Sustained Health Status Improvement in Patients after TMVr. Journal of the American College of Cardiology, 75, 2107-2109.
https://doi.org/10.1016/j.jacc.2020.03.034
[13] Goel, S., Pasam, R.T., Wats, K., et al. (2020) Mitraclip Plus Medical Therapy versus Medical Therapy Alone for Functional Mitral Regurgitation: A Meta-Analysis. Cardiology and Therapy, 9, 5-17.
https://doi.org/10.1007/s40119-019-00157-3
[14] Latib, A., Ancona, M.B., Ferri, L., et al. (2016) Percutaneous Direct Annuloplasty with Cardioband to Treat Recurrent Mitral Regurgitation after MitraClip Implantation. JACC: Cardiovascular Interventions, 9, e191-e192.
https://doi.org/10.1016/j.jcin.2016.06.028
[15] Miller, M., Thourani, V.H. and Whisenant, B. (2018) The Cardioband Transcatheter Annular Reduction System. Annals of Cardiothoracic Surgery, 7, 741-747.
https://doi.org/10.21037/acs.2018.10.10
[16] Ozturk, C., Becher, M.U., Kalkan, A., et al. (2020) The Modified MIDA-Score Predicts Mid-Term Outcomes after Interventional Therapy of Functional Mitral Regurgitation. PLoS ONE, 15, e236265.
https://doi.org/10.1371/journal.pone.0236265
[17] Gunturk, E.E., Baran, O., Akkaya, H., et al. (2020) Evaluation of the Effect of Percutaneous Mitral Balloon Valvuloplasty on Left Ventricular Systolic Functions Using Strain and Strain Rate Echocardiograph. Turkish Journal of Medical Sciences, 50, 724-730.
https://doi.org/10.3906/sag-1901-69
[18] Vassileva, C.M., Boley, T., Markwell, S., et al. (2011) Meta-Analysis of Short-Term and Long-Term Survival Following Repair versus Replacement for Ischemic Mitral Regurgitation. European Journal of Cardio-Thoracic Surgery, 39, 295-303.
https://doi.org/10.1016/j.ejcts.2010.06.034
[19] Yin, Z.H., et al. (2016) Concomitant CABG, Left Ventricular Restoration and Mitral Valve Repair for Ischemic Heart Disease. The Heart Surgery Forum, 19, E272-E275.
https://doi.org/10.1532/hsf.1630
[20] Chirichilli, I., Irace, F.G., Weltert, L.P., et al. (2020) A Direct Correlation between Commissural Orientation and Annular Shape in Bicuspid Aortic Valves: A New Anatomical and Computed Tomography Classification. Interactive CardioVascular and Thoracic Surgery, 30, 666-670.
https://doi.org/10.1093/icvts/ivz325
[21] Sorajja, P., Moat, N., Badhwar, V., et al. (2019) Initial Feasibility Study of a New Transcatheter Mitral Prosthesis: The First 100 Patients. Journal of the American College of Cardiology, 73, 1250-1260.
https://doi.org/10.1016/j.jacc.2018.12.066
[22] Bapat, V., Rajagopal, V., Meduri, C., et al. (2018) Early Experience with New Transcatheter Mitral Valve Replacement. Journal of the American College of Cardiology, 71, 12-21.
https://doi.org/10.1016/j.jacc.2017.10.061
[23] Webb, J.G., Murdoch, D.J., Boone, R.H., et al. (2019) Percutaneous Transcatheter Mitral Valve Replacement: First-in-Human Experience with a New Transseptal System. Journal of the American College of Cardiology, 73, 1239-1246.
https://doi.org/10.1016/j.jacc.2018.12.065
[24] Wang, D.D., Eng, M.H., Greenbaum, A.B., et al. (2018) Validating a Prediction Modeling Tool for Left Ventricular Outflow Tract (LVOT) Obstruction after Transcatheter Mitral Valve Replacement (TMVR). Catheterization and Cardiovascular Interventions, 92, 379-387.
https://doi.org/10.1002/ccd.27447
[25] Resor, C.D. (2019) The TMVr Operator Volume and Outcome Relationship: More Is More. Journal of the American College of Cardiology, 74, 2966-2968.
https://doi.org/10.1016/j.jacc.2019.09.018
[26] Chamberland, C.R., Sugeng, L., Abraham, S., et al. (2015) Three-Dimensional Evaluation of Aortic Valve Annular Shape in Children with Bicuspid Aortic Valves and/or Aortic Coarctation Compared with Controls. American Journal of Cardiology, 116, 1411-1417.
https://doi.org/10.1016/j.amjcard.2015.07.063
[27] Jogu, H.R., Arora, S., Strassle, P.D., et al. (2020) Impact of Age and Comorbidities on the Effect of Transcatheter versus Surgical Mitral Valve Repair on Inpatient Outcomes. Catheterization and Cardiovascular Interventions, 95, 1195-1201.
https://doi.org/10.1002/ccd.28479
[28] Ban, C., Wang, T., Zhang, S., et al. (2017) Fibrinolytic System Related to Pulmonary Arterial Pressure and Lung Function of Patients with Idiopathic Pulmonary Fibrosis. The Clinical Respiratory Journal, 11, 640-647.
https://doi.org/10.1111/crj.12397
[29] Hill, K.M. (2007) Surgical Repair of Cardiac Valves. Critical Care Nursing Clinics of North America, 19, 353-360.
https://doi.org/10.1016/j.ccell.2007.07.004
[30] Hwang, H.Y., Choi, J.W., Kim, H.K., et al. (2015) Paravalvular Leak after Mitral Valve Replacement: 20-Year Follow-Up. The Annals of Thoracic Surgery, 100, 1347-1352.
https://doi.org/10.1016/j.athoracsur.2015.03.104
[31] Cho, I.J., Hong, G.R., Lee, S., et al. (2014) Predictors of Prognosis in Patients with Mild to Moderate Paravalvular Leakage after Mitral Valve Replacement. Journal of Cardiac Surgery, 29, 149-154.
https://doi.org/10.1111/jocs.12298
[32] Lam, B., Cosgrove, D., Bhudia, S.K., et al. (2004) Hemolysis after Mitral Valve Repair: Mechanisms and Treatment. The Annals of Thoracic Surgery, 77, 191-195.
https://doi.org/10.1016/S0003-4975(03)01455-3
[33] CustodioSanchez, P., GarciaMontes, J.A., Sandoval, J.P., et al. (2020) Transcatheter Closure of Paravalvular Leaks: Short and Medium-Term Outcomes. Archivos de Cardiología de México, 90, 122-129.
https://doi.org/10.24875/ACME.M20000103
[34] Yoon, S., Whisenant, B.K., Bleiziffer, S., et al. (2019) Outcomes of Transcatheter Mitral Valve Replacement for Degenerated Bioprostheses, Failed Annuloplasty Rings, and Mitral Annular Calcification. European Heart Journal, 40, 441-451.
https://doi.org/10.1093/eurheartj/ehy590
[35] Rogers, J., Boyd, W.D., Smith, T.W., et al. (2018) Early Experience with Millipede IRIS Transcatheter Mitral Annuloplasty. Annals of Cardiothoracic Surgery, 7, 780-786.
https://doi.org/10.21037/acs.2018.10.05
[36] Rogers, J.H., Boyd, W.D., Smith, T.W., et al. (2019) Transcatheter Mitral Valve Direct Annuloplasty with the Millipede IRIS Ring. Interventional Cardiology Clinics, 8, 261-267.
https://doi.org/10.1016/j.iccl.2019.02.001
[37] Mangieri, A., Laricchia, A., Giannini, F., et al. (2019) Emerging Technologies for Percutaneous Mitral Valve Repair. Frontiers in Cardiovascular Medicine, 6, 161.
https://doi.org/10.3389/fcvm.2019.00161
[38] Ullah, W., Sattar, Y., Mukhtar, M., et al. (2020) Outcomes of Open Mitral Valve Replacement versus Transcatheter Mitral Valve Repair; Insight from the National Inpatient Sample Database. IJC Heart & Vasculature, 2020, Article ID: 28100540.
https://doi.org/10.1016/j.ijcha.2020.100540
[39] Lee, K.E., Kim, K.T., Lee, J.H., et al. (2019) Computational Analysis of the Electromechanical Performance of Mitral Valve Cerclage Annuloplasty Using a Patient-Specific Ventricular Model. The Korean Journal of Physiology & Pharmacology, 23, 63-70.
https://doi.org/10.4196/kjpp.2019.23.1.63
[40] Rogers, J.H. (2017) Mitral Loop Cerclage: Encircling Functional Mitral Regurgitation. JACC: Cardiovascular Interventions, 10, 611-612.
https://doi.org/10.1016/j.jcin.2017.01.025
[41] Kron, I.L., LaPar, D.J., Acker, M.A., et al. (2017) 2016 Update to the American Association for Thoracic Surgery (AATS) Consensus Guidelines: Ischemic Mitral Valve Regurgitation. The Journal of Thoracic and Cardiovascular Surgery, 153, e97-e114.
https://doi.org/10.1016/j.jtcvs.2017.01.031
[42] Pepe, M., De Cillis, E., Acquaviva, T., et al. (2018) Percutaneous Edge-to-Edge Transcatheter Mitral Valve Repair: Current Indications and Future Perspectives. Surgical Technology International, 32, 201-207.
[43] Cetinkaya, A., Bar, S., Hein, S., et al. (2020) Mitral Valve Repair for Posterior Leaflet Prolapse: Long-Term Comparison of Loop Implantation vs Resection. Journal of Cardiac Surgery, 35, 11-20.
https://doi.org/10.1111/jocs.14388
[44] Asai, T. (2015) The Butterfly Technique. Annals of Cardiothoracic Surgery, 4, 370-375.
[45] Asai, T. (2020) Butterfly Technique in Mitral Valve Repair. Asian Cardiovascular and Thoracic Annals, 28, 413-415.
https://doi.org/10.1177/0218492320916298
[46] Gardner, M.A., Hossack, K.F., Smith, I.R. (2019) Long-Term Results Following Repair for Degenerative Mitral Regurgitation—Analysis of Factors Influencing Durability. Heart, Lung and Circulation, 28, 1852-1865.
https://doi.org/10.1016/j.hlc.2018.10.011
[47] Vohra, H.A., Whistance, R.N., Magan, A., et al. (2012) Mitral Valve Repair for Severe Mitral Regurgitation Secondary to Lone Atrial Fibrillation. European Journal of Cardio-Thoracic Surgery, 42, 634-637.
https://doi.org/10.1093/ejcts/ezs029
[48] Bouma, W., Aoki, C., Vergnat, M., et al. (2015) Saddle-Shaped Annuloplasty Improves Leaflet Coaptation in Repair for Ischemic Mitral Regurgitation. The Annals of Thoracic Surgery, 100, 1360-1366.
https://doi.org/10.1016/j.athoracsur.2015.03.096
[49] Drasutiene, A., Chitwood, W.R., Rucinskas, K., et al. (2020) Reoperative, Transapical Off-Pump Neochordae Implantation for Recurrent Degenerative Mitral Regurgitation Resulting from a Newly Ruptured Native Chord. European Journal of Cardio-Thoracic Surgery, 58, 648-650.
https://doi.org/10.1093/ejcts/ezaa105
[50] Graham, L.A., Hawn, M.T. (2019) Learning Curves and the Challenges of Adopting New Surgical Techniques. JAMA Network Open, 2, e1913569.
https://doi.org/10.1001/jamanetworkopen.2019.13569
[51] Vo, A.T., Nguyen, D.H., VanHoang, S., et al. (2019) Learning Curve in Minimally Invasive Mitral Valve Surgery: A Single-Center Experience. Journal of Cardiothoracic Surgery, 14, 213.
https://doi.org/10.1186/s13019-019-1038-0
[52] Kiefer, P., Seeburger, J. (2017) The Potential of Transapical Beating-Heart Mitral Valve Repair with Neo-Chordae. Annals of Translational Medicine, 5, 9.
https://doi.org/10.21037/atm.2017.01.08
[53] Colli, A., Manzan, E., Besola, L., et al. (2018) One-Year Outcomes after Transapical Echocardiography-Guided Mitral Valve Repair. Circulation, 138, 843-845.
https://doi.org/10.1161/CIRCULATIONAHA.118.033509
[54] Colli, A., Manzan, E., Aidietis, A., et al. (2019) Corrigendum to: An Early European Experience with Transapical Off-Pump Mitral Valve Repair with NeoChord Implantation [European Journal of Cardio-Thoracic Surgery 2018; 54: 460-466]. European Journal of Cardio-Thoracic Surgery, 55, 1240.
https://doi.org/10.1093/ejcts/ezz078
[55] Patzelt, J., Zhang, W., Sauter, R., et al. (2019) Elevated Mitral Valve Pressure Gradient Is Predictive of Long-Term Outcome after Percutaneous Edge-to-Edge Mitral Valve Repair in Patients with Degenerative Mitral Regurgitation (MR), But Not in Functional MR. Journal of the American Heart Association, 8, e11366.
https://doi.org/10.1161/JAHA.118.011366
[56] Poulin, A., Beaupre, F., Gravel, C., et al. (2020) Characteristics and Outcomes of Patients Who Are Denied from a Percutaneous Edge-to-Edge Mitral Valve Repair after Being Referred to a Transcatheter Mitral Valve Program: Impact of a Dedicated Multidisciplinary Mitral Heart Team Approach. Journal of Invasive Cardiology, 32, E151-E157.
[57] Lee, M.L., Chen, T.H., Huang, H.D., et al. (2018) Mitral Valve Repair versus Replacement in Patients with Ischemic Mitral Regurgitation. Journal of Thoracic Disease, 10, 2820-2828.
https://doi.org/10.21037/jtd.2018.04.93
[58] Sukul, D., Allen, J. and Kumbhani, D.J. (2019) Volume Considerations for Transcatheter Aortic Valve Replacement in Medicare’s National Coverage Determination. Circulation: Cardiovascular Quality and Outcomes, 12, e5216.
https://doi.org/10.1161/CIRCOUTCOMES.118.005216
[59] Mauricio, P. and Kumbhani, D.J. (2019) MitraClip: How Do We Reconcile the Inconsistent Findings of MITRA-FR and COAPT? Current Cardiology Reports, 21, 150.
https://doi.org/10.1007/s11886-019-1239-0
[60] Stone, G.W., Lindenfeld, J., Abraham, W.T., et al. (2018) Transcatheter Mitral-Valve Repair in Patients with Heart Failure. The New England Journal of Medicine, 379, 2307-2318.
https://doi.org/10.1056/NEJMoa1806640
[61] Obadia, J.F., MessikaZeitoun, D., Leurent, G., et al. (2018) Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. The New England Journal of Medicine, 379, 2297-2306.
https://doi.org/10.1056/NEJMoa1805374
[62] VanDerEnde, M.Y., Said, M.A., VanVeldhuisen, D.J., et al. (2018) Genome-Wide Studies of Heart Failure and Endophenotypes: Lessons Learned and Future Directions. Cardiovascular Research, 114, 1209-1225.
https://doi.org/10.1093/cvr/cvy083
[63] Mack, M.J., Leon, M.B., Thourani, V.H., et al. (2019) Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. The New England Journal of Medicine, 380, 1695-1705.
https://doi.org/10.1056/NEJMoa1814052
[64] Popma, J.J., Deeb, G.M., Yakubov, S.J., et al. (2019) Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. The New England Journal of Medicine, 380, 1706-1715.
https://doi.org/10.1056/NEJMoa1816885