Ninj1、IL-1β在子宫腺肌病和子宫内膜异位症中的表达及意义
Expression and Significance of Ninj1 and IL-1β in Adenomyosis and Endometriosis
DOI: 10.12677/ACM.2021.117476, PDF, HTML, XML, 下载: 450  浏览: 697 
作者: 赵 丽, 李玉英:青岛大学,山东 青岛;袁 芳*:青岛大学附属医院,山东 青岛
关键词: 子宫内膜异位症子宫腺肌病IL-1βNinj1细胞因子自身免疫Endometriosis Adenomyosis IL-1β Ninj1 Cytokines Autoimmunity
摘要: 子宫内膜异位症(endometriosis, EMs)是指子宫内膜组织(腺体和间质)在子宫腔被覆内膜及子宫以外的部位出现、生长、浸润,反复出血,继而引发疼痛、不孕及结节或包块等的妇科疾病。子宫腺肌病是指子宫内膜和子宫内膜间质的浸润,周围是非肿瘤性增生和肥厚的子宫肌层,从而导致与不育相关的子宫体积增加(对称或不对称),痛经和月经过多。目前的研究结论仍无法完全解释两种疾病的发病机制,因此内异症目前的治疗手段极其有限,并且无法完全治愈。近年研究发现两种疾病患者体内的免疫细胞及免疫因子的异常表达可能与这两种疾病的发生发展密切相关,而炎症介质是具有多种生物学功能的分子,其在子宫内膜异位症及子宫腺肌病的疼痛诱导和放大中的作用非常复杂。白细胞介素1β的异常升高可诱导子宫内膜炎症反应的启动;Ninj1既可以促进神经的生长,也可以通过介导白细胞迁移,进而介导炎症。本文就近年IL-1β及Ninj1在子宫腺肌病及子宫内膜异位症发病机制及疼痛症状中的作用研究进展进行综述,旨在为子宫腺肌病及子宫内膜异位症的诊治提供新的思路。
Abstract: Endometriosis (EMs) refers to the appearance, growth and infiltration of endometrial tissues (glands and stroma) in the uterine cavity covering the endometrium and other parts of the uterus, repeated bleeding, and then causing pain, infertility and gynecological diseases such as nodules or masses. Adenomyosis refers to the infiltration of the endometrium and endometrial stroma, surrounded by non-neoplastic hyperplasia and hypertrophy of the myometrium, resulting in increased uterinevolume (symmetrical or asymmetrical) associated with infertility, dysmenorrhea and menstruation excessive. The current research conclusions still cannot fully explain the pathogenesis of the two diseases, so the current treatment methods for endometriosis are extremely limited and cannot be completely cured. In recent years, studies have found that the abnormal expression of immune cells and immune factors in patients with two diseases may be closely related to the occurrence and development of these two diseases. Inflammatory mediators are molecules with multiple biological functions, which are involved in endometriosis. And the role of pain induction and amplification in adenomyosis is very complicated. The abnormal increase of interleukin 1β can induce the initiation of endometrial inflammation; Ninj1 can not only promote the growth of nerves, but also mediate inflammation by mediating leukocyte migration. This article reviews the research progress of IL-1β and Ninj1 in the pathogenesis and pain symptoms of adenomyosis and endometriosis in recent years, aiming to provide diagnosis and treatment of adenomyosis and endometriosis new ideas.
文章引用:赵丽, 李玉英, 袁芳. Ninj1、IL-1β在子宫腺肌病和子宫内膜异位症中的表达及意义[J]. 临床医学进展, 2021, 11(7): 3277-3282. https://doi.org/10.12677/ACM.2021.117476

1. 引言

子宫内膜异位症(endometriosis, EMs)是指子宫内膜组织(腺体和间质)在子宫腔被覆内膜及子宫以外的部位出现、生长、浸润,反复出血,继而引发疼痛、不孕及结节或包块等的妇科疾病 [1] [2],发病率高达10%~15%并呈逐年上升趋势 [3],约6%~10%发生于育龄期女性 [4] [5]。近年来,关于子宫内膜异位症发病机制的研究有很多,其中研究热点是自身免疫理论,而EMs与慢性局部炎症过程和自身抗体的存在有关。如果自身免疫真的存在,那么自身免疫性疾病(AD)的免疫调节治疗措施,有可能可以作为EMs的一种潜在治疗方法。子宫腺肌病主要是指子宫内膜腺体与间质侵犯子宫肌层,并伴随平滑肌增生的良性疾病 [6]。流行病学研究显示,子宫腺肌病的发病高峰年龄为40~50岁,其中约有40%~60%的患者曾有月经过多的表现,15%~30%有进行性加剧的痛经经历。它通常被认为是性激素依赖的性疾病,但其致病机制仍在研究中 [7]。近年研究发现子宫腺肌病及子宫内膜异位症中均存在各种免疫细胞的表达存在异常,因此这两种疾病被认为是慢性炎性疾病。现综述近年IL-1β及Ninj1在子宫腺肌病及子宫内膜异位症发病机制及疼痛机制中作用的研究进展。

2. 子宫内膜特征

卵巢类固醇激素调节子宫内膜功能和人月经,人排卵后,黄体分泌较高水平的孕酮,如果受精的话,可以保持子宫内膜的忍受性。在没有怀孕的情况下,黄体退化,导致循环孕酮水平急剧下降。这会引起子宫内膜局部炎症反应,包括白细胞浸润、细胞因子释放、水肿和基质金属蛋白酶的激活 [8]。子宫内膜修复的过程类似于经典的伤口愈合,包括炎症、其分解、血管生成、组织形成和组织重塑。人子宫内膜主要有两种主要的平衡因子,雌激素和孕激素,和在月经周期调节自噬作用的子宫内膜石川细胞。石川细胞通常在两种激素存在的情况下培养,当一种或两种激素退出时细胞自噬程度增加,凋亡细胞死亡发生率更高。自噬是一种非凋亡的程序性细胞死亡,是真核细胞降解长寿命蛋白质和细胞器的主要途径,诱导自噬对正常人子宫内膜细胞具有促凋亡作用 [9]。根据大量的证据,自噬水平很可能与EMs的发病机制有关。

3. 子宫内膜异位症是一种炎症性疾病:免疫应答的作用

细胞因子是由多种细胞产生和分泌的蛋白质,包括基质细胞、成纤维细胞和内皮细胞。在免疫系统中,它们由白细胞产生,并在表达细胞因子受体的其他白细胞或组织上发挥作用 [10]。促炎细胞因子激活的巨噬细胞在EMs的发生和发展中起着重要作用。子宫内膜和浸润的免疫细胞产生炎性细胞因子,如TNF-α、IL-1β、IL-4、IL-6、IL-8、IL-17进一步刺激炎症反应,这创造了一个影响疾病进展和症状的调节前馈回路,从而形成了一个独特的微环境,使这些病变能够逃避免疫监视 [11] [12]。IL-1在炎症反应的调节中起着核心作用,而腹膜IL-1β可引起子宫内膜异位症间质细胞产生其他细胞因子的级联。EMs腹腔液和血清中IL-1β浓度明显高于无EMs的妇女,除巨噬细胞外,在位和异位子宫内膜细胞是IL-1β的另一个来源,子宫内膜异位症病变释放的IL-17A可显著增加腹膜腔内血管生成细胞因子(IL-8, VEGF)和促炎细胞因子(IL-6和IL-1β),有利于子宫内膜异位症细胞的建立、增殖和迁移 [13] [14]。

4. IL-1β

4.1. IL-1β与子宫内膜异位症

IL-1β是由激活的巨噬细胞产生的一种具有多种功能的细胞因子。G. A. Gonçalves等 [15] 研究发现IL-1β是子宫内膜异位症增殖的关键蛋白,该细胞因子在月经周期的增殖分泌阶段水平升高,在子宫内膜异位症内膜细胞培养中,IL-1β可以刺激IL-6和IL-8的产生,增加细胞增殖,减少细胞凋亡和Bax的表达。与G. A. Gonçalves研究不同的是,冯艳等 [16] 发现内异症患者腹腔液中IL-1β浓度显著高于对照组,而血清中的IL-1β无显著差异。就此推测IL-1β是一种炎症细胞因子,能够局部释放到激活的子宫内膜异位病变组织附近。Scholl等 [17] 研究了伴有经期下腹痛的子宫内膜异位腹腔液中的细胞因子浓度,结果表明,不同程度疼痛之间细胞因子浓度有统计学差异;Kalu等 [18] 发现腹膜液中白介素在子宫内膜发病中浓度显著升高,血清中则没有;Hou等 [19] 发现通过中和IL-1β,能够抵消其对子宫内膜基质细胞的作用。结合上述可知,IL-1β在子宫内膜异位症中具有重要的作用,因此我们通过对子宫内膜异位症中IL-1β的进一步研究,因而可能成为子宫内膜异位症的一种新的治疗方法。

4.2. IL-1β与子宫腺肌病

子宫腺肌病是一种以痛经,子宫异常出血和不孕症为特征的子宫疾病。发病机制表明子宫内膜细胞侵入并增殖于子宫内膜,炎症介质参与了剧烈的疼痛症状,炎症是子宫腺肌病发病机制中的主要生物学决定因素,而炎症尤以IL-1β最为显著,在子宫腺肌病病变中发现了作为深层浸润的神经纤维的基质。子宫腺肌病中神经活性分子的异常表达可能在机制中起作用,神经纤维通过它起源于子宫内膜异位病变,这些周围神经发生机制,子宫内膜异位和子宫腺肌病可能是这些患者出现的痛苦症状的一部分 [20] [21] [22]。研究表明子宫腺肌病的IL-1β和CRH异位子宫内膜的较高表达,从而支持子宫内膜炎性途径参与子宫腺肌病患者的不孕症 [23]。确实,子宫内膜异位症和子宫腺肌病的正常子宫内膜微环境在某些方面对未受影响的女性子宫内膜的细胞和体液免疫力有所不同,患有子宫腺肌病和子宫内膜异位症的妇女的异位子宫内膜具有增加的自由基代谢,从而改变子宫内膜的容受性并导致不育,特别是,巨噬细胞释放的活性氧种类增加以及子宫内膜促氧化剂和抗氧化酶表达的改变是子宫腺肌病子宫内膜炎症事件增加的信号 [24] [25]。

5. Ninj 1

5.1. Ninj1的背景

神经损伤诱导蛋白1 (Ninj1)最初是在施旺细胞和神经元的轴突切开术之后发现的,大多数研究集中在其在神经系统中的作用,且已经证实与炎症相关,该作用归因于其作为黏附分子的功能,即介导白细胞迁移 [26]。近年来,对于Ninj1的研究越来越多,安(Ahn)等人证明Ninj1在人血中在树突状细胞,单核细胞,B淋巴细胞,嗜中性粒细胞上表达,而在T淋巴细胞上仅少量表达 [27]。Araki [24] 等对控制该蛋白的基因进行了研究,主要是通过差异杂交技术鉴定的大鼠基因ninjurin (神经损伤诱导蛋白),该基因在横断或挤压伤后在坐骨神经的远端部分显着上调。Ninjurin在正常的坐骨神经中低水平表达,但在神经损伤后,其在雪旺细胞中的表达增加,在损伤后7~14天达到峰值。Ninjurin是一种新型粘附蛋白,坐骨神经横切后,Ninjurin通过轴突转运并在损伤部位积聚,表明它可能参与了对轴突再生至关重要的细胞粘附相互作用。Toma [28] 等研究强调Ninj1在炎症中的重要作用过程,将其指定为缓解炎症驱动的治疗靶标疾病。

5.2. Ninj1与子宫内膜异位症的关系

子宫内膜异位症创造了炎性环境,但我们才刚刚开始阐明炎症在刺激周围神经生长中的作用。现已经证明,Ninj1在各种炎症性疾病如变态反应性脑脊髓炎和多发性硬化症中都有表达,并在炎症环境中调节神经系统;同时,Ninj1也受到炎症环境的诱导,并被赋予了在轴突生长中的作用 [29]。除了促进神经的生长,Ninj1也被证明可以促进血管的生成,并调节p53依赖的细胞存活和衰老,介导白细胞迁移,进而介导炎症 [30] [31],这些特性在子宫内膜异位症的发病机制中都是关键的,因此,Ninj1不仅可能影响疼痛症状,而且可能影响子宫内膜异位症本身的进展。Mariko Miyashita等 [32] 研究首次证明Ninj1在子宫内膜异位症和子宫腺肌病中有表达,并且是由子宫内膜异位症特有的炎症环境诱导的。由于它的神经遗传学特性,Ninj1可以诱导神经生长,从而可能导致女性这种疾病常见的疼痛症状的发病机制。由此,我们可以将该蛋白的促进神经生长及其介导白细胞迁移的炎症作用类比至我们妇科的子宫腺肌病及子宫内膜异位症中,探究该蛋白在子宫腺肌病及子宫内膜异位症中的表达及其意义。

6. 结语

EMs及子宫腺肌病仍然是无法治愈和常见的疾病,影响生活质量,代表了一种独特的免疫场景。细胞免疫反应及其细胞因子的异常变化与病理生理学(免疫逃逸、粘附、侵袭、血管生成和增殖)有关,同时,自身抗体的存在也是免疫功能障碍的另一个结果,这些免疫改变通过影响子宫内膜容受性、卵泡液、精子流动性和胚胎细胞毒性而导致生殖力下降甚至不孕。

虽然EMs还没有被明确定义为子宫腺肌病,但这两种疾病都有几个相似的特点,如女性(和激素)占优势、遗传多态性、免疫异常和慢性疾病。诊断延误很常见,可能导致生殖潜力和生育能力下降,因此需要在这一医学领域进行更多的研究。

最近,包括细胞因子和自身抗体在内的潜在生物标志物正在开发,有望用于早期筛查,以减少晚期诊断和外科治疗的成本,但也有新的治疗策略能够提供长期利益和改善这些妇女的生育能力。

NOTES

*通讯作者。

参考文献

[1] 中华医学会妇产科学分会子宫内膜异位症协作组. 子宫内膜异位症的诊治指南[J]. 中华妇产科杂志, 2015, 50(3): 161-169.
[2] Kiesel, L. and Sourouni, M. (2019) Diagnosis of Endometriosis in the 21st Century. Climacteric, 22, 296-302.
https://doi.org/10.1080/13697137.2019.1578743
[3] 冷金花, 史精华. 子宫内膜异位症复发的高危因素及其防治策略[J]. 中华妇产科杂志, 2018, 53(9): 640-643.
[4] Giudice, L.C. (2010) Endometriosis. The New England Journal of Medicine, 362, 2389-2398.
https://doi.org/10.1056/NEJMcp1000274
[5] Missmer, S.A., Hankinson, S.E., Spiegelman, D., et al. (2004) Reproductive History and Endometriosis among Premenopausal Women. Obstetrics & Gynecology, 104, 965-974.
https://doi.org/10.1097/01.AOG.0000142714.54857.f8
[6] Reis, F.M., Petraglia, F. and Taylor, R.N. (2013) Endometriosis: Hormone Regulation and Clinical Consequences of Chemotaxis and Apoptosis. Human Reproduction Update, 19, 406-418.
https://doi.org/10.1093/humupd/dmt010
[7] Benagiano, G., Brosens, I. and Habiba, M. (2014) Structural and Molecular Features of the Endomyometrium in Endometriosis and Adenomyosis. Human Reproduction Update, 20, 386-402.
https://doi.org/10.1093/humupd/dmt052
[8] Jabbour, H.N., Kelly, R.W., Fraser, H.M. and Critchley, H.O. (2006) Endocrine Regulation of Menstruation. Endocrine Reviews, 27, 17-46.
https://doi.org/10.1210/er.2004-0021
[9] Choi, J., Jo, M., Lee, E., Oh, Y.K. and Choi, D. (2012) The Role of Autophagy in Human Endometrium. Biology of Reproduction, 86, 70.
https://doi.org/10.1095/biolreprod.111.096206
[10] Brocker, C., Thompson, D., Matsumoto, A., Nebert, D.W. and Vasiliou, V. (2010) Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family. Human Genomics, 5, 30-55.
https://doi.org/10.1186/1479-7364-5-1-30
[11] Giuseppe, M., Giuseppe, D.P., Yorgos, N., et al. (2003) Pathogenesis of Endometriosis: Natural Immunity Dysfunction or Autoimmune Disease? Trends in Molecular Medicine, 9, 223-228.
https://doi.org/10.1016/S1471-4914(03)00051-0
[12] Hanada, T., Tsuji, S., Nakayama, M., Wakinoue, S., Kasahara, K., Kimura, F., Mori, T., Ogasawara, K. and Murakami, T. (2018) Suppressive Regulatory T Cells and Latent Transforming Growth Factor-Beta-Expressing Macrophages Are Altered in the Peritoneal Fluid of Patients with Endometriosis. Reproductive Biology and Endocrinology, 16, 9.
https://doi.org/10.1186/s12958-018-0325-2
[13] Lebovic, D.I., Bentzien, F., Chao, V.A., Garrett, E.N., Meng, Y.G. and Taylor, R.N. (2000) Induction of an Angiogenic Phenotype in Endometriotic Stromal Cell Cultures by Interleukin-1beta. Molecular Human Reproduction, 6, 269-275.
https://doi.org/10.1093/molehr/6.3.269
[14] Bacci, M., Capobianco, A., Monno, A., Cottone, L., Di Puppo, F., Camisa, B., Mariani, M., Brignole, C., Ponzoni, M., Ferrari, S., Panina-Bordignon, P., Manfredi, A. and Rovere-Querini, P. (2009) Macrophages Are Alternatively Activated in Patients with Endometriosis and Required for Growth and Vascularization of Lesions in a Mouse Model of Disease. The American Journal of Pathology, 175, 547-556.
https://doi.org/10.2353/ajpath.2009.081011
[15] Gonçalves, G.A., Invitti, A.L., Parreira, R.M., Kopelman, A., Schor, E. and Girão, M.J. (2017) p27kip1 Overexpression Regulates IL-1β in the Microenvironment of Stem Cells and Eutopic Endometriosis Co-Cultures. Cytokine, 89, 229-234.
https://doi.org/10.1016/j.cyto.2015.12.015
[16] 冯艳, 卢秀琴. VEGF、Ang-2和IL-1β在子宫内膜异位症中的表达[J]. 山西医科大学学报, 2014, 45(10): 961-963.
[17] Scholl, B., Bersinger, N.A., Kuhn, A., et al. (2009) Correlation between Symptoms of Pain and Peritoneal Fluid Inflammatory Cytokine Concentrations in Endometriosis. Gynecological Endocrinology, 25, 701-706.
https://doi.org/10.3109/09513590903159680
[18] Kalu, E., Sumar, N., Giannopoulos, T., et al. (2007) Cytokine Profiles in Serum and Peritoneal Fluid from Infertile Women with and without Endometriosis. Journal of Obstetrics and Gynaecology Research, 33, 490-495.
https://doi.org/10.1111/j.1447-0756.2007.00569.x
[19] Hou, Z., Zhou, J., Ma, X., et al. (2008) Role of interleukin1 Receptor Type II in the Pathogenesis of Endometriosis. Fertility and Sterility, 89, 42-51.
https://doi.org/10.1016/j.fertnstert.2007.01.044
[20] Gori, M., Luddi, A., Belmonte, G., et al. (2016) Expression of Microtubule Associate Protein 2 and Synaptophysin in Endometrium: High Levels in Deep Infiltrating Endometriosis Lesions. Fertility and Sterility, 105, 435-443.
https://doi.org/10.1016/j.fertnstert.2015.10.024
[21] Anaf, V., Simon, P., El Nakadi, I., et al. (2002) Hyperalgesia, Nerve Infiltration and Nerve Growth Factor Expression in Deep Adenomyotic Nodules, Peritoneal and Ovarian Endometriosis. Human Reproduction, 17, 1895-1900.
https://doi.org/10.1093/humrep/17.7.1895
[22] Van Langendonckt, A., Casanas-Roux, F. and Donnez, J. (2002) Oxidative Stress and Peritoneal Endometriosis. Fertility and Sterility, 77, 861-870.
https://doi.org/10.1016/S0015-0282(02)02959-X
[23] Wang, G., Tokushige, N., Russell, P., Dubinovsky, S., Markham, R. and Fraser, I.S. (2010) Neuroendocrine Cells in Eutopic Endometrium of Women with Endometriosis. Human Reproduction, 25, 387-391.
https://doi.org/10.1093/humrep/dep379
[24] Araki, T. and Milbrandt, J. (1996) Ninjurin, a Novel Adhesion Molecule, Is Induced by Nerve Injury and Promotes Axonal Growth. Neuron, 17, 353-361.
https://doi.org/10.1016/S0896-6273(00)80166-X
[25] Benagiano, G., Brosens, I. and Habiba, M. (2014) Structural and Molecular Features of the Endomyometrium in Endometriosis and Adenomyosis. Human Reproduction Update, 20, 386-402.
https://doi.org/10.1093/humupd/dmt052
[26] Ifergan, I., Kebir, H., Terouz, S., Alvarez, J.I., Lecuyer, M.A., Gendron, S., Bourbonniere, L., Dunay, I.R., Bouthillier, A., Moumdjian, R., Fontana, A., Haqqani, A., Klopstein, A., Prinz, M., Lopez Vales, R., Birchler, T. and Prat, A. (2011) Role of Ninjurin-1 in the Migration of Myeloid Cells to Central Nervous System Inflammatory Lesions. Annals of Neurology, 70, 751-763.
https://doi.org/10.1002/ana.22519
[27] Ahn, B.J., Lee, H.J., Shin, M.W., Choi, J.H., Jeong, J.W. and Kim, K.W. (2009) Ninjurin1 Is Expressed in Myeloid Cells and Mediates Endothelium Adhesion in the Brains of EAE Rats. Biochemical and Biophysical Research Communications, 387, 321-325.
https://doi.org/10.1016/j.bbrc.2009.07.019
[28] Toma, L., Sanda, G.M., Raileanu, M., Stancu, C.S., Niculescu, L.S. and Sima, A.V. (2020) Ninjurin-1 Upregulated by TNFα Receptor 1 Stimulates Monocyte Adhesion to Human TNFα-Activated Endothelial Cells, Benefic Effects of Amlodipine. Life Sciences, 249, Article ID: 117518.
https://doi.org/10.1016/j.lfs.2020.117518
[29] Ifergan, I., Kebir, H., Terouz, S., et al. (2011) Role of Ninjurin-1 in the Migration of Myeloid Cells to Central Nervous System Inflammatory Lesions. Annals of Neurology, 70, 751-763.
https://doi.org/10.1002/ana.22519
[30] Yin, G.N., Choi, M.J., Kim, W.J., et al. (2014) Inhibition of Ninjurin 1 Restores Erectile Function through Dual Angiogenic and Neurotrophic Effects in the Diabetic Mouse. Proceedings of the National Academy of Sciences of the United States of America, 111, E2731-E2740.
https://doi.org/10.1073/pnas.1403471111
[31] Cho, S.J., Rossi, A., Jung, Y.S., et al. (2013) Ninjurin1, a Target of p53, Regulates p53 Expression and p53-Dependent Cell Survival, Senescence, and Radiation-Induced Mortality. Proceedings of the National Academy of Sciences of the United States of America, 110, 9362-9367.
https://doi.org/10.1073/pnas.1221242110
[32] Mariko, M., Kaori, K., Arisa, T., et al. (2019) Expression of Nerve Injury-Induced Protein1 (Ninj1) in Endometriosis. Reproductive Sciences, 26, 1105-1110.
https://doi.org/10.1177/1933719118806395