基于碳基材料的柔性电化学传感器研究进展
Research Progress of Flexible Electrochemical Sensors Based on Carbon-Based Materials
摘要: 近年来,柔性电化学传感器由于具有出色的柔韧性,拉伸性和电化学稳定性的优点在各个领域得到广泛的应用。碳基柔性传感器是在柔性基质上使用碳纳米材料或其复合物进行功能化或修饰的传感器。因其具有优异的电化学性能,低成本批量生产,高稳定性和出色的机械性等优点,所以满足了可穿戴传感器所需的高灵敏度,小型化集成的特点和需求。本文简要介绍了碳纳米材料修饰柔性电化学传感器的构建,发展以及在电化学检测中的应用,综述了近年来各类碳基柔性电化学传感器在不同领域的研究进展。
Abstract: In recent years, flexible electrochemical sensors have been widely used in various fields because of their excellent flexibility, extensibility and electrochemical stability. Carbon-based flexible sensors are made by functionalizing or modifying carbon nanomaterials or their composites on flexible substrates. Because of its excellent electrochemical performance, low-cost mass production, high stability and excellent mechanical properties, it meets the characteristics and requirements of high sensitivity, miniaturization and integration required by wearable sensors. This paper briefly introduces the construction, development and application of carbon nanomaterial modified flexible electrochemical sensors in electrochemical detection, and summarizes the research progress of carbon-based flexible electrochemical sensors in different fields in the past several years.
文章引用:田亮, 蓝海天, 李静, 苏梦杰, 姜梦媛, 于春梅. 基于碳基材料的柔性电化学传感器研究进展[J]. 分析化学进展, 2021, 11(3): 108-116. https://doi.org/10.12677/AAC.2021.113012

1. 引言

近年来,柔性电子设备在医疗卫生,生物工程,机器人制造以及工业生产等领域得到迅猛发展。碳基柔性电化学柔性传感器作为可穿戴柔性电子设备的一种,是将机械柔性材料与电化学相结合构建的基于碳纳米材料的柔性电化学设备。与传统的刚性电极相比,碳基柔性电化学传感器因具有稳定性强、拉伸强度高,生物相容度高和集成小型化等特点,成为近年的研究热点 [1]。碳纳米材料具有优异的电子传输性能,高表面积等特点,通过捕捉并放大电化学信号来感测目标物质的电化学行为进而提供检测信息,这一特点使碳基柔性电化学传感器能够在实际检测中对复杂信息进行采集与处理,具有较好的检测限与灵敏度 [2] [3]。因此,以柔性弹性材料和固有导电性碳纳米材料作为支撑电极的柔性电化学传感器在生物医学研究等诸多领域有着不可取代的地位。本文中,我们从柔性材料基底,碳纳米材料及柔性电化学传感器的应用三个方面对其发展进行介绍,并对其的发展做了总结。

2. 柔性材料基底概述

柔性材料是指具备一定柔软度,柔韧性等特性,在物理形变过程中不影响其机械性能的材料。按其是否具有导电性分为基底介电材料和活性材料 [4]。相对于金属和半导体材料等传统刚性材料固有的易脆,拉伸性和敏感性差等缺点,柔性材料凭借较好的可拉伸性、生物相容性以及可穿戴性等优点,逐渐引起各领域的重视 [5]。为了满足柔性电子设备的要求,拉伸性好、轻薄透明、柔性耐腐蚀等特点成为决定基底材料其弹性形变性能的关键因素。在众多柔性基底的选择中,聚二甲基硅氧烷(PDMS)成为了人们的首选。脂肪族芳香族共聚酯(Ecoflex),和PDMS同样以其良好的机械性能和延伸性而闻名。这两种柔性弹性体在具有不同纹理和几何形状的不同表面上提供了高度的可变形性和符合性,使其成为可伸缩和可穿戴传感设备的基本部件之一。聚对苯二甲酸乙二酯(PET)同样是一种性能优异的柔性电子器件基底材料。它不仅无色透明、有光泽,性能较为全面,而且具有出色的稳定性、绝缘性和机械性质,韧性、抗张强度和抗冲击强度也比一般薄膜高得多。综合考虑柔性基底材料的特性,以及考虑到实际应用中低成本的需求,我们主要介绍了PDMS、PET、Ecoflex三种柔性材料应用于柔性电子设备的构建。尤其在可穿戴可植入传感器领域引起重视,例如构建人工耳蜗助听设备,制造可穿戴柔性电化学传感器实现生物体液,脉搏和体温的实时监测等 [6] [7] [8]。

2.1. 聚二甲基硅氧烷(PDMS)

PDMS凭借其高柔韧性,低弹性模量和热稳定性等优点,成为当前和未来构建柔性可穿戴设备应用的热门材料。有人研究了PDMS与电化学技术以及生物医学应用的兼容性,发现其具有优异的生物相容性适合与人体接触,可应用于医疗卫生领域 [9]。Li等人构建了柔性多壁碳纳米管(MWCNT)/PDMS电极。通过将MWCNT-PDMS复合电极切割并连接到分析物溶液中,实现DNA传感器的快速制造,为开发低成本易于用户安装的DNA传感器铺平了道路 [10]。Mao课题组开发了一种基于PDMS的紫外线辐射辅助技术,以制备可拉伸的纳米结构金膜并作为检测NO释放的柔性电极。柔性金膜使电极具有出色的电化学稳定性,可拉伸性以及生物相容性,为感测在机械刺激过程中从细胞或其他生物样品释放的化学信号分子提供了更多机会 [11]。

2.2. 聚对苯二甲酸乙二酯(PET)

PET作为一种常见的可用于食品和药品中的保护膜和基材膜,因其易于制造和高耐腐蚀等优点,近年来被广泛用于可穿戴触摸屏面板和光电领域。例如,Li等人采用简单的原位化学氧化聚合方法成功合成了不同摩尔百分比的聚苯胺(PANI)@花状氧化钨(WO3)纳米复合材料,并将其修饰在柔性PET基板上以制备在室温下运行的NH3传感器 [12]。Chung课题组探索了在聚酰亚胺/聚对苯二甲酸乙二酯(PI/PET)基材上修饰三氧化钨纳米颗粒、碳纳米管、还原氧化石墨烯杂化体,用于构建高性能柔性NO2传感器。该传感器具有出色的NO2感应能力且在室温下具有优异的机械柔韧性和传感性能 [13]。Yao课题组构建了基于PET薄膜的金电极(PGE)葡萄糖传感器。与传统的可穿戴薄膜金电极传感器相比,PGE-葡萄糖传感器制作简单,成本低且所需仪器最少。在0.02至1.11 mM的线性范围内灵敏度为22.05 μA∙mM−1∙cm−2,检测限低至2.7 μM (S/N = 3) [14]。

2.3. 脂肪族芳香族共聚酯(Ecoflex)

Ecoflex是一种脂肪族芳香族共聚酯,作为室温固化有机硅聚合物,具有高拉伸性和延展性,易于制造成复杂的形状 [15]。作为一种基质材料,Ecoflex广泛用于制备医疗级有机硅和介电弹性体,进一步用来生产纳米填充可拉伸传感器以及软机器人。Sencadas课题组通过将MWCNT与Ecoflex混合,构建了一种自立式压阻传感器。压阻传感器显示出高拉伸性,电阻与所施加应变之间具有良好的线性关系,最高可达200%,并具有出色的灵敏度,这对于将传感器用于人体运动监测至关重要 [16]。Li课题组于2018年制备了具有高介电常数的多孔MWCNT/Ecoflex弹性体复合材料,以用作电容式压力传感器的介电层。所制备的传感器可以监测2.6 Pa以下的压力,作为可穿戴设备在监测颈动脉和心跳等生理方面具有出色的性能 [17]。此外,Chou课题组通过将BaTiO3颗粒掺入Ecoflex基质中构建柔性设备。由于Ecoflex的固有伸长率,所制造的设备表现出合适的皮肤贴合性和高输出性能,该设备可以连接到肘部,用于监测关节运动。这项研究对于皮肤保形的无铅压电纳米发电机的研发具有重要意义 [18]。

2.4. 其他柔性材料

除了上述柔性基底材料,聚酰亚胺(PI)作为一种高性能的高分子材料,具有良好成膜性能。PI具有重量轻、强度高、温度范围广、介电性能优异、化学性能稳定性等优点,被广泛用于化工,电气和工业领域 [19]。聚乙烯(PE)是一种重要的聚合物,由于其轻巧、易于加工、多功能性以及较高的介电强度和较低的介电损耗的特点,被广泛使用于电子工业 [20]。而作为一种常见的聚合物,聚氨酯(PU)具有极其简单的制备过程以及良好的柔韧性,其多孔结构有利于电磁波的吸收 [21]。这些柔性材料可用于电化学传感器的构建。

3. 碳纳米材料

柔性电化学传感器是由柔性材料与具有优异机械性能和电子特性的活性材料组成。除了柔性材料外,活性材料作为柔性传感器的核心部分,尤其是碳纳米材料成为制作柔性电化学传感器的理想材料之一。碳作为一种广泛存在的元素,被广泛应用于科学技术领域。根据维度的不同,碳纳米材料主要分为四类:1) 零维结构,如富勒烯、碳量子点;2) 一维结构,如碳纳米管、碳纳米纤维;3) 二维结构,如石墨烯;4) 由零维、一维、二维结构组装而成的三维结构,如碳气凝胶 [22]。本文将着重介绍碳纳米管、石墨烯和碳量子点三种类型碳纳米材料。

3.1. 碳纳米管

自1991年Iijima在电弧蒸发石墨阴极产物中发现碳纳米管以来,碳纳米管因其独特的性能(如热,电,机械和载流能力)而备受关注 [23]。碳纳米管是直径为几纳米,长度为数微米的sp2碳单元,具有独特的电子,化学和机械性能。通过电弧放电,激光蒸发和化学气相沉积方法可以合成两组碳纳米管,即多壁碳纳米管和单壁碳纳米管(SWCNT) [24]。获益于碳纳米管独特的管状结构,碳纳米管具有比表面积大,电子传递速率快和电化学窗口稳定等优点,这些优点使得碳纳米管在多种领域得到良好的应用,因此碳纳米管可以作为一种活性材料修饰电极以制备高效的电化学传感器。Kim等人通过多次电化学阳极扫描SWCNTs网络薄膜的表面进行氧化,通过p型掺杂调节SWCNTs网络薄膜的电子结构,制备了一种透明柔性传感器,用于多巴胺的检测 [25]。Bao等人于2019年通过将MWCNT与PANI混合并修饰在丝网印刷碳电极(SPCE)基板上,制备具有高电导率,高化学耐久性等优点的MWCNT/PANI复合膜,用于尿素的检测 [26]。

但是,因为管与管之间存在很强的范德华相互作用力,因此在溶剂中的分散性差是影响碳纳米管在生物系统中使用的主要问题。有研究表明表面官能化是改善电化学应用中碳纳米管溶解度并提供其他功能特性的广泛使用的有效方法 [27]。此外,研究者还通过将碳纳米管与其他新兴材料(例如金属纳米颗粒、高分子聚合物、生物材料等)结合。在保证碳纳米管特异型结构功能的同时,利用复合材料的协同效应,改善碳纳米管低溶解性,增强其电化学性能 [28]。

3.2. 石墨烯(Graphene)

石墨烯作为一种二维纳米材料,是由sp2杂化键合而成的六角形排列的单层碳原子。由于其优异的力学、电学、热学和光学性能,石墨烯成为研究最多发展最快的碳纳米材料。石墨烯还表现出高电导率,主要在其边缘平面处介导电子转移。这些性能使得石墨烯对于电化学和生物传感导向应用具有潜在的吸引力。然而由于石墨烯片层之间较强的π-π键的相互作用以及范德华力作用,使之易发生团聚导致比表面积和离子导电率下降,很不利于在传感器中的应用。因此研究人员采取许多措施对石墨烯进行改性,使其表面含氧官能团等活性位点被修饰,从而得到石墨烯衍生物或石墨烯复合材料,并最终将其应用到电化学生物传感器的制备中。Wang等采用化学气相沉积法制备Au纳米粒子修饰的石墨烯(AuNPs@Gr)/镍泡沫纳米复合材料(AuNPs@Gr/NiF),被用作电极构建H2O2电化学传感器,表现出高导电性和稳定性 [29]。Zhou等人开发了一种基于化学还原氧化石墨烯(C-rGO)的葡萄糖生物传感器,可以用来检测葡萄糖。该传感器具有0.01~10 mM的宽线性范围,20.21 µA∙mM∙cm−2的高灵敏度和2 µM (S/N = 3)的低检测限 [30]。Tig利用银纳米颗粒(AgNPs)、氧化石墨烯(GO)和聚L-精氨酸制备出可以单独或者同时检测抗坏血酸,多巴胺,尿酸和L-色氨酸的生物传感器,检测限分别为0.984 μmol/L,0.01 μmol/L,0.142 μmol/L和0.122 μmol/L [31]。

3.3. 碳量子点(CQD)

作为一种的新型零维纳米材料,碳量子点(CQD)尺寸小于10 nm,自被发现以来得到了广泛的研究。在检测领域,大多数研究都集中在CQD的荧光特性上。实际上,CQD还具有出色的电导率和电势降低特性,这些优点值得被重视。由多糖水热合成的CQDs表面具有大量的羧基和羟基。CQD由于有带负电荷的羧基,不仅可以稳定水溶液中的金属颗粒,而且还可以通过静电相互作用增强对某些物质的选择性 [32]。Hand等人构建了一种基于Ag@CQDs-rGO纳米复合材料的高灵敏度传感器,用于多巴胺检测。在最佳条件下,多巴胺的线性范围为0.1至300 μM,检出限为1.59 nM (S/N = 3) [33]。Deng课题组研发了基于硼酸酯亲和分子印迹技术和功能化SiO2@CQDs/AuNPs/MPBA纳米复合材料的新型电化学发光传感器。该传感器具有较宽线性范围,优异的灵敏度和低检测限,已成功应用于血清样品中甲胎蛋白的测定 [34]。Muthusankar等人基于N-CQD@Co3O4/MWCNTs杂化纳米复合材料修饰的玻碳电极开发了一种可同时测定抗癌药氟他胺和抗生素呋喃妥因的新型电化学传感器 [35]。

4. 碳基柔性电化学传感器的应用

4.1. 食品、药品的特异性检测

影响食品药品质量的污染物种类繁多,来源复杂。食品、药品的特异性检测对于其质量和安全控制以及评估接触量和潜在的负面健康影响至关重要。但是由于传统分析方法所需设备昂贵和采样程序复杂,其应用可能受到限制。碳基柔性电化学传感器由于检测领域广、定量分析快速、检测方法简便和成本低等优点成为研究的热点。在食品安全检测领域,Raymundo-Pereira等人通过丝网印刷技术在橡胶手套的三个手指上印刷碳电极,并修饰碳球形壳(CSS)或Printex碳纳米球(PCNB)构建非酶柔性电化学传感器。这种柔性电化学传感器可以通过简单地用手套触摸苹果和卷心菜的方法检测和鉴别食品中残留的苯二甲酰胺,苯草胺,百草枯(联吡啶)和杀螨硫磷(有机磷酸酯)四类农药 [36]。Wang课题组构建了基于PDMS膜的一次性丝网印刷碳电极,将硫醇化的适体固定在Fe3O4@Au磁珠上制备磁性生物探针,并组装到丝网印刷碳电极的工作电极上,成功应用于加标花生样品中黄曲霉毒素B1(AFB1)的定量检测 [37]。在药品研究领域中,Khosrokhavar等人构建了基于MIP/石墨烯修饰的丝网印刷碳电极用于选择性的检测抗抑郁药舍曲林,检测限为1.99 × 10−9 M [38]。

4.2. 生理样品中生物分子的检测

生物分子表达在细胞信号转导,DNA/RNA复制和病毒清除中发挥关键的作用。生物分子的异常表达可能是特定疾病的征兆。碳基柔性电化学传感器因其优异的机械柔性,高灵敏度和小型化等优势在生物分子检测和疾病诊断中得到广泛应用。例如,Kim课题组演示了一种能够无创监测唾液尿酸水平的仪器式护齿器。尿酸酶修饰的丝网印刷生物传感器系统对人类唾液中的尿酸检测具有很高的灵敏度,选择性和稳定性,涵盖了健康人和高尿酸血症患者的浓度范围 [39]。Park课题组于2017年提出了一种基于Pt-Au纳米粒子(Pt-AuNPs)修饰的激光诱导石墨烯(LIG)/PDMS电极的高度灵活和选择性的电化学传感器,用于多巴胺的检测 [40]。Oliveira-Jr课题组在微生物纳米纤维素上丝网印刷碳电极制备了一种柔性可穿戴传感平台。该传感平台通过所制备的丝网印刷碳电极可用于检测人类汗液和尿液中的有毒金属镉和铅,检出限分别为1.01和0.43 μM,此外通过阳极预处理功能化丝网印刷碳电极可用于检测人造汗液中的尿酸和17β-雌二醇,检出限分别为1.8 μM和0.58 μM [41]。Miao等人报道了一种超灵敏的电化学分析方法,使用级联趾端介导的链置换反应(SDR)来测量miRNA。此外还引入了还原剂辅助的电化学放大技术来调节记录的信号强度。该方法在生物样本中也表现良好,并在实际应用中成功的区分病人样本和健康对照。因此,这项工作为外泌体miRNA分析提供了一种有前景的方法,在癌症诊断中有巨大的潜在应用价值 [42]。

4.3. 细胞行为研究

在生命组织中,细胞行为通常由信号分子控制,这些信号分子多为生物活性物质,例如蛋白质,肽和小分子。对细胞行为的研究有益于探究生命活动的规律,为诊治疾病,研究药物的功效以及副作用的控制提供科学方向和实验依据。碳基柔性电化学传感器具有出色的检测特异性、实施低成本和检测装置微型化的优点,近年来在细胞行为研究中备受重视。Xiang课题组使用DNA模板原位合成法,在氮掺杂石墨烯片上制备高度分散的纳米金。该方法制备的纳米复合材料具有显著提高的电催化能力,用以监测活癌细胞释放的NO [43]。Islam课题组通过在柔性PET基板上有效转移垂直排列的碳纳米管而制备一种柔性且低成本的基因传感器,以靶向肿瘤生物标记物CEACAM5来有效地检测结直肠癌细胞 [44]。Salimi课题组开发了一种基于羧基化多壁碳纳米管/还原型氧化石墨烯的场效应晶体管的新型柔性超灵敏适体传感器。该适体传感器具有高灵敏度,选择性,稳定性和可重复性等优点,可用于检测临床样品和生物液中的CA125和其他癌症生物标记物,具有广阔的应用前景 [45]。

4.4. 环境监测

自工业革命开始以来,环境污染已成为世界上最重要的问题之一。有害污染物如毒素,重金属,农药和药用异生物释放到生态系统而造成的环境污染日益严重。传统环境监测由于选择性和灵敏度的缺乏而无法检测低浓度样品。碳基柔性电化学传感器可以实现低成本、易携带、多功能快速高效检测目标物质的目标。有研究者提出了一种新颖的石墨烯织物气体传感器,该传感器由还原型氧化石墨烯纳米片和电纺尼龙纳米纤维组成。石墨烯电子织物在室温下对NO2 (13.6%@1 ppm)表现出灵敏的响应,对反复变形具有出色的机械可靠性 [46]。Wang课题组使用乙二胺对PET纤维基材进行改性,将多壁碳纳米管和聚苯胺分别地修饰在PET上。所制造的PET-NH2-MWCNTs/PANI传感器具有显著增强的氨(NH3)感测性能 [47]。Kanoun课题组通过在柔性聚酰亚胺基板上激光诱导石墨烯,并修饰多壁碳纳米管和金纳米粒子来构建柔性电化学传感器。该传感器在10 μM~140 μM的浓度范围内能够快速,高选择性检测水样中的亚硝酸盐 [48]。

5. 结论与展望

碳基柔性电化学传感器由于取材便利、高稳定性、高机械性能以及强亲和力的特性为电化学传感器的发展开拓了新的道路。根据实际需求开发出不同材料相结合的碳基柔性传感器能有效解决电化学检测的准确性,灵敏度和重现性等研究难点。这使得电化学传感器的应用领域更加广泛。即便如此,配制可控化和大规模高效率的工业化制作碳基柔性传感器仍然是亟待解决的问题,也存在成本,使用寿命和适用范围等问题。相信在未来,随着对电化学传感器领域的研究更加深入,碳基柔性传感器将以更先进的组合和表征方法在临床诊断、环境监测、食品安全等与人们生活息息相关的方面得到更好的发展和应用。

参考文献

[1] Economou, A., Kokkinos, C. and Prodromidis, M. (2018) Flexible Plastic, Paper and Textile Lab-on-Chip Platforms for Electrochemical Biosensing. Lab on a Chip, 18, 1812-1830.
https://doi.org/10.1039/C8LC00025E
[2] Sonuç Karaboğa, M.N. and Sezgintürk, M.K. (2018) A Novel Silanization Agent Based Single Used Biosensing System: Detection of C-Reactive Protein as a Potential Alzheimer’s Disease Blood Biomarker. Journal of Pharmaceutical and Biomedical Analysis, 154, 227-235.
https://doi.org/10.1016/j.jpba.2018.03.016
[3] Shrivas, K., Ghosale, A., Bajpai, P.K., Kant, T., Dewangan, K. and Shankar, R. (2020) Advances in Flexible Electronics and Electrochemical Sensors Using Conducting Nanomaterials: A Review. Microchemical Journal, 156, Article ID: 104944.
https://doi.org/10.1016/j.microc.2020.104944
[4] 蔡依晨, 黄维, 董晓臣. 可穿戴式柔性电子应变传感器[J]. 科学通报, 2017, 62(7): 635-649.
https://doi.org/10.1360/N972015-01445
[5] 曾天禹, 黄显. 可穿戴传感器进展、挑战和发展趋势[J]. 科技导报, 2017, 35(2): 19-32.
[6] Zhou, H., Zhang, Y., Qiu, Y., Wu, H., Qin, W., Liao, Y., et al. (2020) Stretchable Piezoelectric Energy Harvesters and Self-Powered Sensors for Wearable and Implantable Devices. Biosensors and Bioelectronics, 168, Article ID: 112569.
https://doi.org/10.1016/j.bios.2020.112569
[7] Xua, J.W., Zhang, X.H., Liu, Y., Zhang, Y., Nie, H.-Y., Zhang, G., et al. (2020) Selective Coaxial Ink 3D Printing for Single-Pass Fabrication of Smart Elastomeric Foam with Embedded Stretchable Sensor. Additive Manufacturing, 36, Article ID: 101487.
https://doi.org/10.1016/j.addma.2020.101487
[8] Ren, X., Pei, K., Peng, B., Zhang, Z., Wang, Z., Wang, X., et al. (2016) A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array. Advanced Materials, 28, 4832-4838.
https://doi.org/10.1002/adma.201600040
[9] Yim, E.K.F., Reano, R.M., Pang, S.W., Yee, A.F., Chen, C.S. and Leong, K.W. (2005) Nanopattern-Induced Changes in Morphology and Motility of Smooth Muscle Cells. Biomaterials, 26, 5405-5413.
https://doi.org/10.1016/j.biomaterials.2005.01.058
[10] Toworfe, G.K., Composto, R.J., Adams, C.S., Shapiro, I.M. and Ducheyne, P. (2004) Fibronectin Adsorption on Surface-Activated Poly (Dimethylsiloxane) and Its Effect on Cellular Function. Journal of Biomedical Materials Research Part A, 71A, 449-461.
https://doi.org/10.1002/jbm.a.30164
[11] Zhao, X., Wang, K.Q., Li, B., Wang, C., Ding, Y., Li, C., et al. (2018) Fabrication of Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet Irradiation Approach for Nitric Oxide Detection Released from Cells. Analytical Chemistry, 90, 7158-7163.
https://doi.org/10.1021/acs.analchem.8b01088
[12] Li, S., Lin, P., Zhao, L., Wang, C., Liu, D., Liu, F., Sun, P., et al. (2018) The Room Temperature Gas Sensor Based on Polyaniline@Flower-Like WO3 Nanocomposites and Flexible PET Substrate for NH3 Detection. Sensors and Actuators B: Chemical, 259, 505-513.
https://doi.org/10.1016/j.snb.2017.11.081
[13] Yaqoob, U., Uddin, A.S.M.I. and Chung, G.S. (2016) A High-Performance Flexible NO2 Sensor Based on WO3 NPs Decorated on MWCNTs and RGO Hybrids on PI/PET Substrates. Sensors and Actuators B: Chemical, 224, 738-746.
https://doi.org/10.1016/j.snb.2015.10.088
[14] Wang, Y., Wang, X., Lu, W., Yuan, Q., Zheng, Y. and Yao, B. (2019) A Thin Film Polyethylene Terephthalate (PET) Electrochemical Sensor for Detection of Glucose in Sweat. Talanta, 198, 86-92.
https://doi.org/10.1016/j.talanta.2019.01.104
[15] Hoeksema, H., De, Vos, M., Verbelen, J., Pirayesh, A. and Monstrey, S. (2013) Scar Management by Means of Occlusion and Hydration: A Comparative Study of Silicones versus a Hydrating Gel-Cream. Burns, 39, 1437-1448.
https://doi.org/10.1016/j.burns.2013.03.025
[16] Mai, H., Mutlu, R., Tawk, C., Alici, G. and Sencadas, V. (2019) Ultra-Stretchable MWCNT-Ecoflex Piezoresistive Sensors for Human Motion Detection Applications. Composites Science and Technology, 173, 118-124.
https://doi.org/10.1016/j.compscitech.2019.02.001
[17] Wen, Z., Yang, J., Ding, H., Zhang, W., Wu, D., Xu, J., et al. (2018) Ultra-Highly Sensitive, Low Hysteretic and Flexible Pressure Sensor Based on Porous MWCNTs/Ecoflex Elastomer Composites. Journal of Materials Science: Materials in Electronics, 29, 20978-20983.
https://doi.org/10.1007/s10854-018-0242-3
[18] Yu, J., Hou, X., Cui, M., Zhang, N., Zhang, S., He, J., et al. (2020) Skin-Conformal BaTiO3/Ecoflex-Based Piezoelectric Nanogenerator for Self-powered Human Motion Monitoring. Materials Letters, 269, Article ID: 127686.
https://doi.org/10.1016/j.matlet.2020.127686
[19] Ding, Y., Hou, H., Zhao, Y., Zhu, Z. and Fong, H. (2016) Electrospun Polyimide Nanofibers and Their Applications. Progress in Polymer Science, 61, 67-103.
https://doi.org/10.1016/j.progpolymsci.2016.06.006
[20] Charoonsuk, T., Muanghlua, R., Sriphan. S., Pongampai, S. and Vittayakorn, N. (2021) Utilization of Commodity Thermoplastic Polyethylene (PE) by Enhanced Sensing Performance with Liquid Phase Electrolyte for a Flexible and Transparent Triboelectric Tactile Sensor. Sustainable Materials and Technologies, 27, Article No. e00239.
https://doi.org/10.1016/j.susmat.2020.e00239
[21] Yao, Y.Y., Jin, S.H., Ma, X., Yu, R., Zou, H., Wang, H., et al. (2020) Graphene-Containing Flexible Polyurethane Porous Composites with Improved Electromagnetic Shielding and Flame Retardancy. Composites Science and Technology, 200, Article ID: 108457.
https://doi.org/10.1016/j.compscitech.2020.108457
[22] Georgakilas, V., Perman, J.A., Tucek, J. and Zboril, R. (2015) Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 115, 4744-4822.
https://doi.org/10.1021/cr500304f
[23] lijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[24] Carrell, R., Evans, D. and Stein, P. (1991) Mobile Reactive Centre of Serpins and the Control of Thrombosis. Nature, 353, 576-578.
https://doi.org/10.1038/353576a0
[25] Oh, J.W., Heo, J. and Kim, T.H. (2018) An Electrochemically Modulated Single-Walled Carbon Nanotube Network for the Development of a Transparent Flexible Sensor for Dopamine. Sensors and Actuators B: Chemical, 267, 438-447.
https://doi.org/10.1016/j.snb.2018.04.048
[26] Bao, Q., Yang, Z., Song, Y., Fan, M., Pan, P., Liu, J., et al. (2019) Printed Flexible Bifunctional Electrochemical Urea-PH Sensor Based on Multiwalled Carbon Nanotube/Polyaniline Electronic Ink. Journal of Materials Science: Materials in Electronics, 30, 1751-1759.
https://doi.org/10.1007/s10854-018-0447-5
[27] Sui, G., Liu, D., Liu, Y., Ji, W., Zhang, Q. and Fu, Q. (2019) The Dispersion of CNT in TPU Matrix with Different Preparation Methods: Solution Mixing vs Melt Mixing. Polymer, 182, Article ID: 121838.
https://doi.org/10.1016/j.polymer.2019.121838
[28] Pantano, A. and Cappello, F. (2008) Numerical Model for Composite Material with Polymer Matrix Reinforced by Carbon Nanotubes. Meccanica, 43, 263-270.
https://doi.org/10.1007/s11012-008-9121-y
[29] Wang, X.J., Guo, X.L., Chen, J., Ge, C., Zhang, H., Liu, Y., et al. (2017) Au Nanoparticles Decorated Graphene/Nickel Foam Nanocomposite for Sensitive Detection of Hydrogen Peroxide. Journal of Materials Science and Technology, 33, 246-250.
https://doi.org/10.1016/j.jmst.2016.11.029
[30] Zhou, M., Zhai, Y. and Dong, S. (2009) Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical Chemistry, 81, 5603-5613.
https://doi.org/10.1021/ac900136z
[31] Tig, G.A. (2017) Development of Electrochemical Sensor for Detection of Ascorbic Acid, Dopamine, Uric Acid And L-Tryptophan Based on Ag Nanoparticles and Poly(L-Arginine)-Graphene Oxide Composite. Journal of Electroanalytical Chemistry, 807, 19-28.
https://doi.org/10.1016/j.jelechem.2017.11.008
[32] Tan, A., Yang, G. and Wan, X. (2021) Ultra-High Quantum Yield Nitrogen-Doped Carbon Quantum Dots and Their Versatile Application in Fluorescence Sensing, Bioimaging and Anti-Counterfeiting. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 253, Article ID: 119583.
https://doi.org/10.1016/j.saa.2021.119583
[33] Han, G., Cai, J., Liu, C., Ren, J., Wang, X., Yang, J., et al. (2021) Highly sensitive Electrochemical Sensor Based on Xylan-Based Ag@CQDs-rGO Nanocomposite for Dopamine Detection. Applied Surface Science, 541, Article ID: 148566.
https://doi.org/10.1016/j.apsusc.2020.148566
[34] Mo, G., He, X., Zhou, C., Ya, D., Feng, J., Yu, C., et al. (2019) A Novel ECL Sensor Based on a Boronate Affinity Molecular Imprinting Technique and Functionalized Sio2@CQDs/AuNPs/MPBA Nanocomposites for Sensitive Determination of Alpha-Fetoprotein. Biosensors and Bioelectronics, 126, 558-564.
https://doi.org/10.1016/j.bios.2018.11.013
[35] Muthusankar, G., Devi, R.K. and Gopu, G. (2020) Nitrogen-Doped Carbon Quantum Dots Embedded Co3O4with Multiwall Carbon Nanotubes: An Efficient Probe for the Simultaneous Determination of Anticancer and Antibiotic Drugs. Biosensors and bioelectronics, 150, Article ID: 111947.
https://doi.org/10.1016/j.bios.2019.111947
[36] Raymundo-Pereira, P.A., Gomes, N.O., Shimizu, F.M., Machado, S.A.S. and Oliveira Jr., O.N. (2021) Selective and Sensitive Multiplexed Detection of Pesticides in Food Samples Using Wearable, Flexible Glove-Embedded Non-Enzymatic Sensors. Chemical Engineering Journal, 408, Article ID: 127279.
https://doi.org/10.1016/j.cej.2020.127279
[37] Wang, C., Qian, J., An, K., Ren, C., Lu, X., Hao, N., et al. (2018) Fabrication of Magnetically Assembled Aptasensing Device for Label-Free Determination of Aflatoxin B1 Based on EIS. Biosensors and Bioelectronics, 108, 69-75.
https://doi.org/10.1016/j.bios.2018.02.043
[38] Khosrokhavar, R., Motaharian, A., Milani Hosseini, M.R. and Mohammadsadegh, S. (2020) Screen-Printed Carbon Electrode (SPCE) Modified by Molecularly Imprinted Polymer (MIP) Nanoparticles and Graphene Nanosheets for Determination of Sertraline Antidepressant Drug. Microchemical Journal, 159, Article ID: 105348.
https://doi.org/10.1016/j.microc.2020.105348
[39] Kim, J., Imani, S., de, Araujo, W.R. and Warchall, J. (2015) Wearable Salivary Uric Acid Mouthguard Biosensor with Integrated Wireless Electronics. Biosensors and Bioelectronics, 74, 1061-1068.
https://doi.org/10.1016/j.bios.2015.07.039
[40] Hui, X., Xuan, X., Kim, J. and Park, J.Y. (2019) A Highly Flexible and Selective Dopamine Sensor Based on Pt-Au Nanoparticle-Modified Laser-Induced Graphene. Electrochimica Acta, 328, Article ID: 135066.
https://doi.org/10.1016/j.electacta.2019.135066
[41] Silva, R.R., Raymundo-Pereira, P.A., Campos, A.M., Wilson, D., Otoni, C.G., Barud, H.S., et al. (2020) Microbial Nanocellulose Adherent to Human Skin Used in Electrochemical Sensors to Detect Metal Ions and Biomarkers in Sweat. Talanta, 218, Article ID: 121153.
https://doi.org/10.1016/j.talanta.2020.121153
[42] Miao, P. and Tang, Y.G. (2020) Cascade Toehold-Medicated Strand Displacement Reaction for Ultrasensitive Detection of Exosomal MicriRNA. CCS Chemistry, 2, 2331-2339.
https://doi.org/10.31635/ccschem.020.202000458
[43] Dou, B., Li, J., Jiang, B., Yuan, R. and Xiang, Y. (2019) DNA-Lated in Situ Synthesis of Highly Dispersed AuNPs on Nitrogen-Doped Graphene for Real-Time Electrochemical Monitoring of Nitric Oxide Released from Live Cancer Cells. Analytical Chemistry, 91, 2273-2278.
https://doi.org/10.1021/acs.analchem.8b04863
[44] Gulati, P., Mishra, P., Khanuja, M., Narang, J. and Islam, S.S. (2020) Nano-Moles Detection of Tumor Specific Biomarker DNA for Colorectal Cancer Detection Using Vertically Aligned Multi-Wall Carbon Nanotubes Based Flexible Electrodes. Process Biochemistry, 90, 184-192.
https://doi.org/10.1016/j.procbio.2019.11.021
[45] Mansouri Majd, S. and Salimi, A. (2018) Ultrasensitive Flexible FET-Type Aptasensor for CA 125 Cancer Marker Detection Based on Carboxylated Multiwalled Carbon Nanotubes Immobilized onto Reduced Graphene Oxide Film. Analytica Chimica Acta, 1000, 273-282.
https://doi.org/10.1016/j.aca.2017.11.008
[46] Park, H.J., Kim, W.J., Lee, H.K., Lee, D.-S., Shin, J.-H., Jun, Y., et al. (2018) Highly Flexible, Mechanically Stable, and Sensitive NO2 Gas Sensors Based on Reduced Graphene Oxide Nanofibrous Mesh Fabric for Flexible Electronics. Sensors and Actuators B: Chemical, 257, 846-852.
https://doi.org/10.1016/j.snb.2017.11.032
[47] Ma, J., Fan, H., Li, Z., Jia, Y., Kumar Yadav, A., Dong, G., et al. (2021) Multi-Walled Carbon Nanotubes/Polyaniline on the Ethylenediamine Modified Polyethylene Terephthalate Fibers for a Flexible Room Temperature Ammonia Gas Sensor with High Responses. Sensors and Actuators B: Chemical, 334, Article ID: 129677.
https://doi.org/10.1016/j.snb.2021.129677
[48] Nasraoui, S., Al-Hamry, A., Teixeira, P.R., Ameur, S., Paterno, L.G., Ben Ali, M., et al. (2021) Electrochemical Sensor for Nitrite Detection in Water Samples Using Flexible Laser-Induced Graphene Electrodes Functionalized by CNT Decorated by Au Nanoparticles. Journal of Electroanalytical Chemistry, 880, Article ID: 114893.
https://doi.org/10.1016/j.jelechem.2020.114893