撤稿:金属纳米颗粒的环境行为及生物效应研究进展
DOI: 10.12677/NAT.2021.113013, PDF, HTML, 下载: 395  浏览: 889 
作者: 黄虹雁:成都理工大学生态环境学院,国家环境保护水土污染协同控制与联合修复重点实验室,四川 成都;蒲生彦:成都理工大学生态环境学院,国家环境保护水土污染协同控制与联合修复重点实验室,四川 成都;成都理工大学,地质灾害防治与地质环境保护国家重点实验室,四川 成都
关键词: 金属纳米颗粒环境行为生物效应植物微生物 Metal Nanoparticles Environmental Behavior Biological Effects Botany Microorganism
摘要:

撤稿声明: 金属纳米颗粒的环境行为及生物效应研究进展”一文刊登在20218月出版的《纳米技术》2021年第11卷第3期第100-108页上。因作者失误,根据国际出版流程,编委会现决定撤除此重复稿件,保留原出版出处:

黄虹雁, 蒲生彦. 金属纳米颗粒的环境行为及生物效应研究进展[J]. 纳米技术, 2021, 11(3): 100-108. https://doi.org/10.12677/NAT.2021.113013

并对此撤稿带来的不便致以歉意。

Abstract:

文章引用:黄虹雁, 蒲生彦. 撤稿:金属纳米颗粒的环境行为及生物效应研究进展[J]. 纳米技术, 2021, 11(3): 100-108. https://doi.org/10.12677/NAT.2021.113013

参考文献

[1] Park, B., Donaldson, K., Duffin, R., Tran, L., Kelly, F., Mudway, I., et al. (2008) Hazard and Risk Assessment of a Na-noparticulate Cerium Oxide-Based Diesel Fuel Additive—A Case Study. Inhalation Toxicology, 20, 547-566.
https://doi.org/10.1080/08958370801915309
[2] Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., et al. (2016) Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnology Science and Applications, 9, 49-67.
https://doi.org/10.2147/NSA.S99986
[3] El Hadri, H., Louie, S.M. and Hackley, V.A. (2018) Assessing the In-teractions of Metal Nanoparticles in Soil and Sediment Matrices—A Quantitative Analytical Multi-Technique Approach. Environmental Science: Nano, 5, 203-214.
https://doi.org/10.1039/C7EN00868F
[4] Goswami, L., Kim, K.-H., Deep, A., Das, P., Bhattacharya, S.S., Kumar, S., et al. (2017) Engineered Nano Particles: Nature, Behavior, and Effect on the Environment. Journal of Environmental Management, 196, 297-315.
https://doi.org/10.1016/j.jenvman.2017.01.011
[5] Chen, H. (2018) Metal Based Nanoparticles in Agricultural System: Behavior, Transport, and Interaction with Plants. Chemical Speciation & Bioavailability, 30, 123-134.
https://doi.org/10.1080/09542299.2018.1520050
[6] Dickson, D., Liu, G., Li, C., Tachiev, G. and Cai, Y. (2012) Dispersion and Stability of Bare Hematite Nanoparticles: Effect of Dispersion Tools, Nanoparticle Concentration, Humic Acid and Ionic Strength. Science of the Total Environment, 419, 170-177.
https://doi.org/10.1016/j.scitotenv.2012.01.012
[7] Maisto, G., Manzo, S., De Nicola, F., Carotenuto, R., Rocco, A. and Alfani, A. (2011) Assessment of the Effects of Cr, Cu, Ni and Pb Soil Contamination by Ecotoxicological Tests. Journal of Environmental Monitoring, 13, 3049-3056.
https://doi.org/10.1039/c1em10496a
[8] Miao, A.-J., Zhang, X.-Y., Luo, Z., Chen, C.-S., Chin, W.-C., Santschi, P.H. et al. (2010) Zinc Oxide Engineered Nanoparticles Dissolution and Toxicity to Marine Phytoplankton. Environ-mental Toxicology and Chemistry, 29, 2814-2822.
https://doi.org/10.1002/etc.340
[9] Mortimer, M., Kasemets, K. and Kahru, A. (2010) Toxicity of ZnO and CuO Nanoparticles to Ciliated Protozoa Tetrahymena thermophila. Toxicolo-gy, 269, 182-189.
https://doi.org/10.1016/j.tox.2009.07.007
[10] Sharma, V.K., Siskova, K.M., Zboril, R. and Gardea-Torresdey, J.L. (2014) Organic-Coated Silver Nanoparticles in Biological and Environmental Conditions: Fate, Stability and Toxicity. Advances in Colloid and Interface Science, 204, 15-34.
https://doi.org/10.1016/j.cis.2013.12.002
[11] Misra, S.K., Dybowska, A., Berhanu, D., Noële Croteau, M., Luoma, S.N., Boccaccini, A.R., et al. (2012) Isotopically Modified Nanoparticles for Enhanced Detection in Bioaccumulation Studies. Environmental Science & Technology, 46, 1216-1222.
https://doi.org/10.1021/es2039757
[12] Bian, S.-W., Mudunkotuwa, I.A., Rupasinghe, T. and Grassian, V.H. (2011) Aggregation and Dissolution of 4nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir, 27, 6059-6068.
https://doi.org/10.1021/la200570n
[13] Zhu, X., Zhou, J. and Cai, Z. (2011) TiO2 Nanoparticles in the Marine Environment: Impact on the Toxicity of Tributyltin to Abalone (Haliotis diversicolor supertexta) Embryos. Envi-ronmental Science & Technology, 45, 3753-3758.
https://doi.org/10.1021/es103779h
[14] Jia, J., Li, F., Zhai, S., Zhou, H., Liu, S., Jiang, G., et al. (2017) Suscepti-bility of Overweight Mice to Liver Injury as a Result of the ZnO Nanoparticle-Enhanced Liver Deposition of Pb2+. Envi-ronmental Science & Technology, 51, 1775-1784.
https://doi.org/10.1021/acs.est.6b05200
[15] Kim, I., Lee, B.-T., Kim, H.-A., Kim, K.-W. and Kim, S.D. (2016) Citrate Coated Silver Nanoparticles Change Heavy Metal Toxicities and Bioaccumulation of Daphnia magna. Chemosphere, 143, 99-105.
https://doi.org/10.1016/j.chemosphere.2015.06.046
[16] Wang, F., Yao, J., Liu, H., Chen, H., Yi, Z., Yu, Q., et al. (2015) Cu and Cr Enhanced the Effect of Various Carbon Nanotubes on Microbial Communities in an Aquatic Environ-ment. Journal of Hazardous Materials, 292, 137-145.
https://doi.org/10.1016/j.jhazmat.2015.03.032
[17] Deng, R., Lin, D.H., Zhu, L.Z., Majumdar, S., White, J.C., Gardea-Torresdey, J.L., et al. (2017) Nanoparticle Interactions with Co-Existing Contaminants: Joint Toxicity, Bioaccu-mulation and Risk. Nanotoxicology, 11, 591-612.
https://doi.org/10.1080/17435390.2017.1343404
[18] Moussa, H., Merlin, C., Dezanet, C., Balan, L., Medjahdi, G., Ben-Attia, M., et al. (2016) Trace Amounts of Cu2+ Ions Influence ROS Production and Cytotoxicity of ZnO Quantum Dots. Journal of Hazardous Materials, 304, 532-542.
https://doi.org/10.1016/j.jhazmat.2015.11.013
[19] Wang, Y., Peng, C., Fang, H., Sun, L., Zhang, H., Feng, J., et al. (2015) Mitigation of Cu(II) Phytotoxicity to Rice (Oryza sativa) in the Presence of TiO2 and CeO2 Nanoparticles Combined with Humic Acid. Environmental Toxicology and Chemistry, 34, 1588-1596.
https://doi.org/10.1002/etc.2953
[20] Deng, H., McShan, D., Zhang, Y., Sinha, S.S., Arslan, Z., Ray, P.C., et al. (2016) Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Anti-biotics. Environmental Science & Technology, 50, 8840-8848.
https://doi.org/10.1021/acs.est.6b00998
[21] Rizwan, M., Ali, S., Qayyum, M.F., Sik Ok, Y., Adrees, M., Ibrahim, M., et al. (2017) Effect of Metal and Metal Oxide Nano-particles on Growth and Physiology of Globally Important Food Crops: A Critical Review. Journal of Hazardous Mate-rials, 322, 2-16.
https://doi.org/10.1016/j.jhazmat.2016.05.061
[22] Lin, D. and Xing, B. (2007) Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environmental Pollution, 150, 243-250.
https://doi.org/10.1016/j.envpol.2007.01.016
[23] El-Temsah, Y.S. and Joner, E.J. (2012) Impact of Fe and Ag Nanoparticles on Seed Germination and Differences in Bioavailability during Exposure in Aqueous Suspension and Soil. Environmental Toxicology, 27, 42-49.
https://doi.org/10.1002/tox.20610
[24] Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. and Fotovat, A. (2012) Impact of Bulk and Nanosized Titanium Dioxide (TiO2) on Wheat Seed Germination and Seedling Growth. Biological Trace Element Research, 146, 101-106.
https://doi.org/10.1007/s12011-011-9222-7
[25] Tripathi, D.K., Shweta, Singh, S., Singh, S., Pandey, R., Singh, V.P., et al. (2017) An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12.
https://doi.org/10.1016/j.plaphy.2016.07.030
[26] Frazier, T.P., Burklew, C.E. and Zhang, B. (2014) Titanium Di-oxide Nanoparticles Affect the Growth and MicroRNA Expression of Tobacco (Nicotiana tabacum). Functional & Inte-grative Genomics, 14, 75-83.
https://doi.org/10.1007/s10142-013-0341-4
[27] Kouhi, S.M.M., Lahouti, M., Ganjeali, A. and Entezari, M.H. (2015) Long-Term Exposure of Rapeseed (Brassica napus L.) to ZnO Nanoparticles: Anatomical and Ultrastructural Responses. Environmental Science and Pollution Research, 22, 10733-10743.
https://doi.org/10.1007/s11356-015-4306-0
[28] Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H.M., He, X., Mbarki, S., et al. (2017) Impact of Metal and Metal Oxide Nanoparticles on plant: A Critical Review. Frontiers in Chemistry, 5, Article No. 78.
https://doi.org/10.3389/fchem.2017.00078
[29] Kaveh, R., Li, Y.-S., Ranjbar, S., Tehrani, R., Brueck, C.L. and Van Aken, B. (2013) Changes in Arabidopsis thaliana Gene Expression in Response to Silver Nanoparticles and Silver Ions. Environmental Science & Technology, 47, 10637-10644.
https://doi.org/10.1021/es402209w
[30] Yasmeen, F., Raja, N.I., Razzaq, A. and Komatsu, S. (2017) Proteomic and Physiological Analyses of Wheat Seeds Exposed to Copper and Iron Nanoparticles. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1865, 28-42.
https://doi.org/10.1016/j.bbapap.2016.10.001
[31] Singh, J. and Lee, B.-K. (2016) Influence of Nano-TiO2 Parti-cles on the Bioaccumulation of Cd in Soybean Plants (Glycine max): A Possible Mechanism for the Removal of Cd from the Contaminated Soil. Journal of Environmental Management, 170, 88-96.
https://doi.org/10.1016/j.jenvman.2016.01.015
[32] Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M. and Ghassempour, A. (2013) Effect of Silver Nanoparticles on Oryza sativa L. and Its Rhizosphere Bacteria. Ecotoxicology and Environmental Safety, 88, 48-54.
https://doi.org/10.1016/j.ecoenv.2012.10.018
[33] Perreault, F., Samadani, M. and Dewez, D. (2014) Effect of Soluble Copper Released from Copper Oxide Nanoparticles Solubilisation on Growth and Photosynthetic Processes of Lemna gibba L. Nanotoxicology, 8, 374-382.
https://doi.org/10.3109/17435390.2013.789936
[34] Tan, W., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2018) Interaction of Titanium Dioxide Nanoparticles with Soil Components and Plants: Current Knowledge and Future Research Needs—A Critical Review. Environmental Science: Nano, 5, 257-278.
https://doi.org/10.1039/C7EN00985B
[35] Zhao, Y., Mao, G., Han, S. and Gao, L. (2015) Effect of Namomaterials on Heavy Metal Transport in Alkaline Soil. Soil & Sediment Contamination, 24, 694-703.
https://doi.org/10.1080/15320383.2015.1001057
[36] Nair, P.M.G. and Chung, I.M. (2014) Impact of Copper Oxide Nanoparticles Exposure on Arabidopsis thaliana Growth, Root System Development, Root Lignificaion, and Mo-lecular Level Changes. Environmental Science and Pollution Research, 21, 12709-12722.
https://doi.org/10.1007/s11356-014-3210-3
[37] Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2011) Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry, 59, 3485-3498.
https://doi.org/10.1021/jf104517j
[38] Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., et al. (2015) Translocation and Biotransformation of CuO Nanoparticles in Rice (Oryza sativa L.) Plants. Environmental Pollution, 197, 99-107.
https://doi.org/10.1016/j.envpol.2014.12.008
[39] Servin, A.D., Castillo-Michel, H., Hernandez-Viezcas, J.A., Corral Diaz, B., Peralta-Videa, J.R. and Gardea-Torresdey, J.L. (2012) Synchrotron Micro-XRE and Micro-XANES Confirmation of the Uptake and Translocation of TiO2 Nanoparticles in Cucumber (Cucumis sativus) Plants. Environ-mental Science & Technology, 46, 7637-7643.
https://doi.org/10.1021/es300955b
[40] Zhu, Z.-J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O.R., et al. (2012) Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environ-mental Science & Technology, 46, 12391-12398.
https://doi.org/10.1021/es301977w
[41] Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., Cotte, M., Rico, C., Peralta-Videa, J.R., et al. (2013) In Situ Synchrotron X-Ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles in Soil Cultivated Soybean (Glycine max). Acs Nano, 7, 1415-1423.
https://doi.org/10.1021/nn305196q
[42] Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J.C., et al. (2012) Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environmental Science & Technology, 46, 4434-4441.
https://doi.org/10.1021/es204212z
[43] Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A.-M., et al. (2012) Accumulation, Translocation and Impact of TiO2 Nanoparticles in Wheat (Triticum aestivum spp.): Influence of Diameter and Crystal Phase. Science of the Total Environment, 431, 197-208.
https://doi.org/10.1016/j.scitotenv.2012.04.073
[44] Schloter, M., Dilly, O. and Munch, J.C. (2003) Indicators for Evaluating Soil Quality. Agriculture Ecosystems & Environment, 98, 255-262.
https://doi.org/10.1016/S0167-8809(03)00085-9
[45] Schimel, J.P. and Schaeffer, S.M. (2012) Microbial Control over Carbon Cycling in Soil. Frontiers in Microbiology, 3, Article No. 348.
https://doi.org/10.3389/fmicb.2012.00348
[46] Colman, B.P., Arnaout, C.L., Anciaux, S., Gunsch, C.K., Hochella Jr., M.F., Kim, B., et al. (2013) Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Re-sponses under Realistic Field Scenario. PLoS ONE, 8, e57189.
https://doi.org/10.1371/journal.pone.0057189
[47] Hansch, M. and Emmerling, C. (2010) Effects of Silver Nano-particles on the Microbiota and Enzyme Activity in Soil. Journal of Plant Nutrition and Soil Science, 173, 554-558.
https://doi.org/10.1002/jpln.200900358
[48] Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J. and Guo, H. (2011) TiO2 and ZnO Nanoparticles Negatively Affect Wheat Growth and Soil Enzyme Activities in Agricultural Soil. Journal of Envi-ronmental Monitoring, 13, 822-828.
https://doi.org/10.1039/c0em00611d
[49] Simonin, M., Guyonnet, J.P., Martins, J.M.F., Ginot, M. and Richaume, A. (2015) Influence of Soil Properties on the Toxicity of TiO2 Nanoparticles on Carbon Mineralization and Bacterial Abundance. Journal of Hazardous Materials, 283, 529-535.
https://doi.org/10.1016/j.jhazmat.2014.10.004
[50] Shin, Y.-J., Kwak, J.I. and An, Y.-J. (2012) Evidence for the Inhibitory Effects of Silver Nanoparticles on the Activities of Soil Exoenzymes. Chemosphere, 88, 524-529.
https://doi.org/10.1016/j.chemosphere.2012.03.010
[51] He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N. and Lin, X. (2011) The Impact of Iron Oxide Magnetic Nanoparticles on the Soil Bacterial Community. Journal of Soils and Sedi-ments, 11, 1408-1417.
https://doi.org/10.1007/s11368-011-0415-7
[52] Torsvik, V. and Ovreas, L. (2002) Microbial Diversity and Func-tion in Soil: From Genes to Ecosystems. Current Opinion in Microbiology, 5, 240-245.
https://doi.org/10.1016/S1369-5274(02)00324-7
[53] Kumar, N., Shah, V. and Walker, V.K. (2011) Perturbation of an Arctic Soil Microbial Community by Metal Nanoparticles. Journal of Hazardous Materials, 190, 816-822.
https://doi.org/10.1016/j.jhazmat.2011.04.005
[54] Ben-Moshe, T., Frenk, S., Dror, I., Dror, M. and Berkowitz, B. (2013) Effects of Metal Oxide Nanoparticles on Soil Properties. Chemosphere, 90, 640-646.
https://doi.org/10.1016/j.chemosphere.2012.09.018
[55] Ge, Y., Schimel, J.P. and Holden, P.A. (2011) Evidence for Negative Effects of TiO2 and ZnO Nanoparticles on Soil Bacterial Communities. Environmental Science & Technolo-gy, 45, 1659-1664.
https://doi.org/10.1021/es103040t
[56] Nogueira, V., Lopes, I., Rocha-Santos, T., Santos, A.L., Santos, A.L., Rasteiro, G.M., Antunes, F., et al. (2012) Impact of Organic and Inorganic Nanomaterials in the Soil Mi-crobial Community Structure. Science of the Total Environment, 424, 344-350.
https://doi.org/10.1016/j.scitotenv.2012.02.041