WNT信号在胶质母细胞瘤中的作用研究
Study on the Role of WNT Signal in Glioblastoma
DOI: 10.12677/ACM.2021.118488, PDF, HTML, XML, 下载: 315  浏览: 523  科研立项经费支持
作者: 林圣武, 朱雨峰:青海大学研究生院,青海 西宁;金小青, 卢忠胜*:青海省人民医院神经外科,青海 西宁
关键词: 胶质母细胞瘤WNT信号靶向治疗Glioblastoma WNT Signaling Targeted Therapy
摘要: 胶质母细胞瘤(GBM)是常见的原发性中枢神经系统恶性肿瘤,该肿瘤具有侵袭性强、增殖快、耐药性强及伴有大量血管生成等特点,给临床治疗带来了巨大挑战。因此,需要我们迫切地参透GBM的发病机制,以实现治疗上的突破。近年来,随着对WNT蛋白家族研究的深入,WNT信号在GBM中的发病机制和肿瘤侵袭性生长及靶向治疗方面受到越来越多的关注,本文将在上述几个方面展开综述。
Abstract: Glioblastoma (GBM) is a common malignant tumor of primary central nervous system and the tumor is aggressive, quick breeding, its resistance is strong, and accompanied by a large number of angiogenesis and other characteristics, to clinical therapy, it brings the huge challenge. Obviously, it is urgent to understand the pathogenesis of GBM in order to achieve a breakthrough in treatment. In recent years, with the in-depth study of the WNT protein family, more and more attention has been paid to the pathogenesis of WNT signaling in glioblastoma, tumor invasive growth and targeted therapy. This paper will review the above aspects.
文章引用:林圣武, 朱雨峰, 金小青, 卢忠胜. WNT信号在胶质母细胞瘤中的作用研究[J]. 临床医学进展, 2021, 11(8): 3364-3372. https://doi.org/10.12677/ACM.2021.118488

1. 引言

胶质瘤是最常见的原发性脑肿瘤,胶质瘤约占所有脑肿瘤的28% [1]。大约55%的胶质瘤是GBM (WHO IV级),主要表现为血管增生、高侵袭性和正常脑组织的坏死 [2] [3] [4] [5]。目前临床上在外科手术治疗、放射治疗和肿瘤生物学相关方面的治疗取得了一定进展,但由于该肿瘤边界与正常脑组织分辨不清,难以做到手术全切,术后极易复发,此外术后辅助放、化疗患者的预后仍不理想,许多新的药物,虽具有不同的治疗机制,但该肿瘤受到不均匀渗透的血脑屏障(BBB)的保护,使其不受细胞毒性化疗的影响,这让许多临床研究最后以失败告终。因此,现阶段GBM标准治疗方案仍然是通过手术切除,然后再进行化疗和/或放疗 [2] [3]。然而,GBM术后的5年存活率仍低于10% [6]。其中胶质瘤细胞耐化疗是胶质瘤患者治疗失败的关键。因此,需要迫切地参透GBM的发病机制,以实现治疗上的突破。既往的研究表明,多种信号通路参与了细胞增殖、侵袭和GBM转移 [7] [8] [9] [10]。而WNT信号通路是多种癌症发生相关的主要通路之一,其中就包括GBM [11] [12] [13] [14]。由于目前对GBM的具体发病机制仍无定论,所以缺乏统一、有效的治疗方法。因此,本文将对WNT信号在GBM中的发病机制和肿瘤侵袭性生长及靶向治疗方面展开综合叙述。

2. WNT家族和WNT信号通路的认识

WNT家族由19名成员组成,按发现顺序编号:WNT1、2、2B、3、3A、4、5A、5B、6、7A、7B、8A、8B、9A、9B、10A、10B、11和16。编码具有22或24个半胱氨酸残基的保守的糖蛋白,这些蛋白对胚胎发育和成体组织的稳态至关重要。在人类中,细胞膜人卷曲蛋白(FZD)家族是WNT信号通路的跨膜受体,19种WNT蛋白通过FZD 1-FZD 10受体和低密度脂蛋白受体相关蛋白的配体(LRP 5和LRP 6)发挥生物学作用 [15]。

细胞内的WNT信号转导途径可以分为β-catenin依赖通路和β-catenin独立通路。其中β-catenin蛋白是钙粘蛋白复合体的一个亚基,钙粘蛋白复合体是形成细胞连接的一组蛋白质 [16]。WNT/β-catenin信号通路,也称为典型的WNT通路,在没有WNT信号的情况下,β-catenin被糖原合成酶激酶3β磷酸化,随后被泛素–蛋白酶体系统降解,从而在细胞质中保持较低的水平,当WNT配体与其受体结合时,β-catenin磷酸化和降解减少,累积的β-catenin再与转录因子T细胞因子/淋巴细胞增强因子(TCF/LEF-1)结合形成多聚复合物进入细胞核,促进c-myc、n-myc、sox 9和CD 44等多种基因在细胞增殖中的表达 [17]。激活该通路的蛋白如WNT1和WNT3a。非典型的WNT信号由平面细胞极性(PCP)和Ca(2+)途径组成,PCP信号通路与细胞存活和骨骼生长有关,活化的T细胞介导的Ca2+信号通路的核因子与细胞内Ca2+的释放和细胞生理的调控有关 [18],激活该通路的蛋白如WNT5a和WNT11。部分蛋白既可激活经典途径又能激活非经典途径发挥作用,如WNT7a,是目前研究较为广泛的WNT配体之一,在人类肿瘤中起着双重作用,在肺癌中,作为肿瘤抑制因子,WNT7a表达下调,但在其他几种恶性肿瘤中,如卵巢癌、乳腺癌和胶质瘤中,作为肿瘤促进因子,WNT7a被上调 [19]。Xu等 [20] 通过肿瘤基因组数据库系统的对19种WNT蛋白进行了分析,发现神经胶质瘤中WNT5A的mRNA表达明显增高,而WNT10B的表达明显降低。此外,WNT5A和WNT10B的表达与胶质瘤的临床病理有关。生存分析显示WNT5A和WNT16的高表达与胶质瘤患者的总体生存率(OS)低相关。相反,WNT3、WNT5B和WNT10B的过度表达与患者更好的预后相关。在19种WNTs中,WNT5A可作为胶质瘤诊断和治疗的候选指标,WNT10B可作为抗胶质瘤研究的参考指标,为探讨WNTs信号与胶质瘤多途径的关系提供了可能的方向。

3. WNT信号在GBM中的发病机制

WNT信号在胶质瘤的生物学行为中具有积极的促进作用,但其具体作用机制,至今尚无定论,本文综述了WNT信号在GBM中致癌作用的实验证据,可能与以下几种机制相关。

3.1. WNT信号元件的表观遗传改变

表观遗传学方面,通过沉默WNT通路的负效应可激活WNT信号,并参与GBM的恶性行为。GBM中常发生WNT通路抑制基因的表观遗传沉默,包括sFRPs (sFRP 1、SFRP 2、sFRP 4、sFRP 5),Dickkopf (DKK 1, DKK 3)和Naked (NKD 1, NKD 2)启动子的甲基化。Roth等 [21] 报道了SFRP (可溶性卷曲相关蛋白)在胶质瘤细胞增殖和迁移中的作用,SFRP的异位表达可减弱胶质瘤细胞的运动能力。据报道 [22],50%的继发性GBM发现DKK 1启动子高度甲基化,DKK通过与其共受体LRP结合,作为WNT信号传导的拮抗剂。也有报道指出 [23],在原发性GBM中,SFRP1、SFRP2和NKD2的甲基化发生率均超过40%。这些研究表明,在GBM中,WNT信号元件的表观遗传改变可能导致了WNT通路的异常激活,进而对胶质母细胞瘤的生长、分化、侵袭等生物学行为产生积极的影响作用。

3.2. WNT信号在GBM干细胞(GSCs)中的转导作用

众所周知,许多肿瘤的肿瘤干细胞(CSCs)是驱动肿瘤的发生和增殖的罪魁祸首,而WNT信号在调节正常干细胞的分化及增殖中发挥不可或缺的作用。WNT抑制因子1 (WIF 1)可诱导细胞衰老,从而阻碍肿瘤的生长和干细胞的生长 [24]。按照这个思路或模型去研究GBM,许多研究结果支持GSCs是导致GBM恶性及对标准疗法的治疗抗药性和复发的关键细胞群的理论。

1) DePinho等 [25] 在原代GBM标本和GBM细胞系染色体20q11.21中将多型性腺瘤基因样蛋白2 (PLAGL 2)扩增出,PLAGL 2作为胶质瘤的一种原癌基因,赋予了胶质瘤细胞干细胞样特征,其在GBM细胞中的过表达导致WNT信号元件的上调,包括WNT 6、FZD 9和FZD 2。因此,PLAGL 2可能通过激活典型的WNT信号而对GBM干细胞的维持和肿瘤细胞发育起重要作用。

2) GBM被认为是由肿瘤干细胞(CSCs)亚群所驱动的,这些细胞能够自我更新和再现肿瘤的异质性。Rheinbay等 [26] 对GSCs的染色质状态与整个肿瘤进行了比较分析,并确定了一组GSCs特有的发育转录因子(TFs)。他们还发现,人类的一个Achaete-scute同源物(AS CL1)通过抑制负调节因子DKK1来激活GSCs中的WNT信号,ASCL1、WNT信号转导和协同TFs之间的调节联系,在GBM干细胞的维持和致瘤性中发挥重要作用。

3) 转录因子FOXM 1是多种器官癌细胞有丝分裂进程的主要调控因子。据报道 [27],FOXM1是WNT信号的一个下游组件,其通过与β-catenin直接结合促进β-catenin核易位,FoxM 1-β-catenin交互控制WNT目标基因的表达。还有研究报道 [28],GSCs中有大量的FOXM 1,FOXM 1在GSCs中与有丝分裂激酶MELK形成蛋白复合物,导致GSCs中有丝分裂调控基因的增加,促进GBM细胞的自我更新和化学抗药性。可见,核FOXM 1的表达水平与核β-catenin在GBM患者标本中的表达水平相关。

4) Bartscherer等 [29] [30] 发现WNT特异性分泌蛋白EVI参与人类细胞中WNT配体的分泌,是WNT信号通路的核心元件之一。在胶质瘤中,EVI强烈表达,在该研究中作者通过消耗胶质瘤和胶质瘤衍生的干细胞样细胞中的EVI阻碍了细胞增殖、克隆生长和侵袭。

综上,从众多GBM细胞标本检测结果来看,可以认为WNT信号过表达与GBM的发生发展存在一定因果关系。

3.3. WNT与其它信号通路的交叉串扰可能参与GBM的发生发展过程

3.3.1. 与EGFR信号通路交叉串扰

据报道 [31],表皮因子生长受体(EGFR)信号是WNT通路的上游调节因子,表皮生长因子诱导的ERK 2上调导致CK2a磷酸化,导致β-catenin进入细胞核,形成β-catenin/TCF/LEF复合物。研究发现 [32],60%的GBM患者出现EGFR扩增和过度激活,在GBM中也观察到了几种激活突变,其中最显著的是EGFRvIII突变,并且已知这些突变有助于癌症的发展。这些发现强调了EGFR和WNT通路之间的相互作用在肿瘤发展中的重要性。

3.3.2. 与MET信号通路的信号串扰

众所周知,肝细胞生长因子受体(MET)在肿瘤的生长、干细胞的维持和转移中起着至关重要的作用。在GBM中,大约30%的GBM表现出MET的过度表达 [33],MET的表达水平与患者的生存率和恶性程度也相对应。MET表达强度高与GBM患者WHO分级高、OS和PFS短相关 [34] [35] [36]。也有临床GBM标本分析 [37] 显示MET表达与侵袭性相关基因(MMP 2和MMP 9)和原癌基因(c-MYC、KRAS和JUN)呈正相关。Kim等 [38] 发现,通过加入HGF诱导的β-catenin核易位能够激活MET信号,提示MET信令可能是WNT信令的上游调节器。可见,MET信号通路与癌症中的WNT信号有关,尽管GBM中的这种相互作用尚未被完全了解。

3.3.3. 与音猬因子(SHH)信号通路的信号串扰

刺猬信号(Hedgehog)通路是动物发育的关键调控之一,在所有的两侧对称动物中都有表达,Shh信号是刺猬信号中的一种,是细胞增殖和肿瘤发生的关键途径 [39]。髓母细胞瘤的分子分类研究表明,SHH和WNT是促进不同肿瘤亚群形成的重要信号通路 [40]。在GBM中SHH通路的激活也有报道,GLI 1能与SFRP 1启动子结合并增加SFRP 1 mRNA在GBM中的表达,SHH信号对WNT信号具有抑制作用 [41]。还有研究表明,用化学抑制剂Vismodegib阻断SHH信号,可导致细胞周期阻滞和凋亡,并下调患者来源的GBM细胞GLI 1的表达 [42]。但是在GBM中,SHH信号与WNT信号的相互作用还有待进一步的研究。

4. WNT信号在GBM侵袭性生长中的作用

肿瘤转移是导致死亡的主要因素。与其他实体肿瘤相比,GBM很少转移到其他肿瘤。然而,GBM肿瘤细胞广泛分布于邻近脑实质,由于GBM的侵袭性和浸润性生长模式,几乎不可能进行肿瘤的根治性切除。有学者 [43] 通过体内连续应用高度侵袭性的U87R4细胞及非侵袭性但增殖的U87L4细胞移植试验丰富了高侵袭性GBM细胞群体,并对这些群体的mRNA表达谱进行了分析,发现FZD 4是WNT信号家族的成员之一,并且是WNT的阳性调节因子,它控制着胶质瘤干细胞的干性和侵袭性,提示了WNT信号激活在GBM侵袭性中的作用,它可能是GBM复发和预后不良的主要原因。

WNT5A还通过激活β-catenin非依赖性途径,诱导GBM细胞迁移,WNT5A基因的敲除对胶质瘤细胞的迁移能力有明显的抑制作用 [44]。与此相一致的是,重组WNT5A蛋白的表达通过增加金属蛋白酶2 (MMP 2)的活性来刺激GBM细胞的迁移。使用WNT 2和FZD 2等其他WNT调节器也进行了类似的观察 [45],这些发现共同表明WNT信号在GBM侵袭中起着关键作用,这为靶向WNT信号作为一种潜在有效的抗GBM治疗方法提供了理论依据。

5. WNT信号在GBM中的靶向治疗作用

以上研究表明,WNT靶向治疗可能为GBM的治疗带来新突破。然而,应用于临床上治疗GBM的WNT抑制剂知之甚少。一些针对WNT信号的药物已经或正在开发用于临床试验。这些药物大致可分为三类:1) 非甾体抗炎药;2) 小分子化学抑制剂;3) 针对不同WNT通路成分的治疗性抗体。其中,非甾体类抗炎药(NSAID)在临床研究中被认为是潜在的治疗性WNT抑制剂,其可降低核仁β-catenin水平并诱导其降解 [46],如舒林酸、塞来昔布可降低β-catenin水平,进而抑制β-catenin/TCF/LEF复合物的转录活性。阿司匹林可通过降低β-catenin/TCF转录来抑制胶质瘤细胞增殖和侵袭,阻滞胶质瘤细胞G0/G1周期,降低β-catenin/TCF活性,减少肿瘤侵袭和生长 [47]。小分子化学抑制剂及针对不同WNT通路成分的治疗性抗体如表1

Table 1. Wnt signaling pathway related targeted drugs

表1. WNT信号通路相关靶向药物

6. 展望

WNT信号在多个层面参与了GBM的病理过程,包括肿瘤的发生、干细胞状态的维持及肿瘤细胞的侵袭生长等。每一个过程都可能为GBM的治疗提供潜在的靶点。近年来在GBM靶向药物相关的研究逐渐走进学者的视线,这些药物试验在临床前模型中能有效地抑制WNT的激活,这可以进一步积累支持WNT在GBM中重要作用的数据,增加WNT抑制作为治疗GBM的一种方法的可行性。相信随着研究的进一步增多和深入,WNT信号在胶质瘤中的作用机制会被逐渐明确,并且能在GBM的治疗中提供新的突破。

基金项目

青海省卫健委科研指导性计划项目(NO: 2018-wjzdx-01)。

NOTES

*通讯作者。

参考文献

[1] Ostrom Quinn, T., Gittleman, H., Liao, P., Rouse, C., Chen, Y., Dowling, J., Wolinsky, Y., Kruchko, C. and Barnholtz-Sloan, J. (2014) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro-Oncology, 16, iv1-iv63.
https://doi.org/10.1093/neuonc/nou223
[2] Hossein, S.S., Mahtab, Z., Marzieh, L., Majid, G.-M., Ahmad, G., Zarei, J.H., Reza, S.H. and Amirhossein, S. (2019) Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Current Pharmaceutical Design, 25, 333-342.
https://doi.org/10.2174/1381612825666190313123704
[3] Zhang, J., Huang, K., Shi, Z., Zou, J., Wang, Y., Jia, Z., Zhang, A., Han, L., Yue, X., Liu, N., Jiang, T., You, Y., Pu, P. and Kang, C. (2011) High β-catenin/Tcf-4 Activity Confers Glioma Progression via Direct Regulation of AKT2 Gene Expression. Neuro-Oncology, 13, 600-609.
https://doi.org/10.1093/neuonc/nor034
[4] Mazurek, A., Luo, W., Krasnitz, A., Hicks, J., Scott, P.R. and Bruce, S. (2012) DDX5 Regulates DNA Replication and Is Required for Cell Proliferation in a Subset of Breast Cancer Cells. Cancer Discovery, 2, 812-825.
https://doi.org/10.1158/2159-8290.CD-12-0116
[5] Sarkar, M., Khare, V., Guturi, K.K.N., Das, N. and Ghosh, M.K. (2015) The DEAD Box Protein p68: A Crucial Regulator of AKT/FOXO3a Signaling Axis in Oncogenesis. Oncogene, 34, 5843-5856.
https://doi.org/10.1038/onc.2015.42
[6] Clarke, J., Penas, C., Pastori, C., Komotar, R.J., Bregy, A., Shah, A.H., Wahlestedt, C. and Ayad, N.G. (2013) Epigenetic Pathways and Glioblastoma Treatment. Epigenetics, 8, 785-795.
https://doi.org/10.4161/epi.25440
[7] Rossi, M., Magnoni, L., Miracco, C., Mori, E., Tosi, P., Pirtoli, L., Tini, P., Oliveri, G., Cosci, E. and Bakker, A. (2011) β-Catenin and Gli1 Are Prognostic Markers in Glioblastoma. Cancer Biology & Therapy, 11, 753-761.
https://doi.org/10.4161/cbt.11.8.14894
[8] Furukawa, K., Kumon, Y., Harada, H., Kohno, S., Nagato, S., Teraoka, M., Fujiwara, S., Nakagawa, K., Hamada, K. and Ohnishi, T. (2006) PTEN Gene Transfer Suppresses the Invasive Potential of Human Malignantgliomas by Regulating Cell Invasion-Related Molecules. International Journal of Oncology, 29, 73-81.
[9] Schmelzle, T. and Hall, M.N. (2000) TOR, a Central Controller of Cell Growth. Cell, 103, 253-262.
https://doi.org/10.1016/S0092-8674(00)00117-3
[10] Neshat, M.S., Mellinghoff, I.K., Tran, C., Stiles, B., Thomas, G., Petersen, R., Frost, P., Gibbons, J.J., Wu, H. and Sawyers, C.L. (2001) Enhanced Sensitivity of PTEN-Deficient Tumors to Inhibition of FRAP/mTOR. Proceedings of the National Academy of Sciences of the United States of America, 98, 10314-10319.
https://doi.org/10.1073/pnas.171076798
[11] Geoerger, B., Kerr, K., Tang, C.B., Fung, K.M., Powell, B., Sutton, L.N., Phillips, P.C. and Janss, A.J. (2001) Antitumor Activity of the Rapamycin Analog CCI-779 in Human Primitive Neuroectodermal Tumor/Medulloblastoma Models as Single Agent and in Combination Chemotherapy. Cancer Research, 61, 1527-1532.
[12] Chen, Q., Weng, H.-Y., Tang, X.-P., Lin, Y., Yuan, Y., Li, Q., Tang, Z., Wu, H.-B., Yang, S., Li, Y., Zhao, X.-L., Fu, W.-J., Niu, Q., Feng, H., Zhang, X., Wang, Y., Bian, X.-W. and Yao, X.-H. (2019) ARL4C Stabilized by AKT/mTOR Pathway Promotes the Invasion of PTEN-Deficient Primary Human Glioblastoma. The Journal of Pathology, 247, 266-278.
https://doi.org/10.1002/path.5189
[13] Zhang, W.-B., Wang, Z., Shu, F., Jin, Y.-H., Liu, H.-Y., Wang, Q.-J. and Yong, Y. (2010) Activation of AMP-Activated Protein Kinase by Temozolomide Contributes to Apoptosis in Glioblastoma Cells via p53 Activation and mTORC1 Inhibition. Journal of Biological Chemistry, 285, 404061-40471.
https://doi.org/10.1074/jbc.M110.164046
[14] Bi, Y., Li, H., Yi, D., Sun, Y., Bai, Y., Zhong, S., Song, Y., Zhao, G. and Chen, Y. (2018) Cordycepin Augments the Chemosensitivity of Human Glioma Cells to Temozolomide by Activating AMPK and Inhibiting the AKT Signaling Pathway. Molecular pharmaceutics, 15, 4912-4925.
https://doi.org/10.1021/acs.molpharmaceut.8b00551
[15] Lan, L., Wang, W., Huang, Y., Bu, X. and Zhao, C. (2019) Roles of Wnt7a in Embryo Development, Tissue Homeostasis, And Human Diseases. Journal of Cellular Biochemistry, 120, 18588-18598.
https://doi.org/10.2210/pdb3ifq/pdb
[16] Choi, H.-J., Gross, J.C., Pokutta, S. and Weis, W.I. (2009) Interactions of Plakoglobin and Beta-Catenin with Desmosomal Cadherins: Basis of Selective Exclusion of Alpha- and Beta-Catenin from Desmosomes. The Journal of Biological Chemistry, 284, 31776-31778.
https://doi.org/10.1074/jbc.M109.047928
[17] Coyle-Rink, J., Del Valle, L., Sweet, T., Khalili, K. and Amini, S. (2002) Developmental Expression of Wnt Signaling Factors in Mouse Brain. Cancer Biology & Therapy, 1, 640-645.
https://doi.org/10.4161/cbt.313
[18] Shao, Y., Zheng, Q., Wang, W., Xin, N., Song, X. and Zhao, C. (2016) Biological Functions of Macrophage-Derived Wnt5a, and Its Roles in Human Diseases. Oncotarget, 7, 67674-67684.
https://doi.org/10.18632/oncotarget.11874
[19] Wang, L., Wang, X. and Jiang, X. (2019) miR-127 Suppresses Gastric Cancer Cell Migration and Invasion via Targeting Wnt7a. Oncology Letters, 17, 3219-3226.
https://doi.org/10.3892/ol.2019.9955
[20] Xu, A., Yang, H., Gao, K., Zhan, Z., Song, Z., Huang, T. and Song, Y. (2020) Expression Profiles and Prognostic Significance of WNT Family Members in Glioma via Bioinformatic Analysis. Bioscience Reports, 40, Article ID: BSR20194255.
https://doi.org/10.1042/BSR20194255
[21] Roth, W., Wild-Bode, C., Platten, M., Grimmel, C., Melkonyan, H.S., Dichgans, J. and Weller, M. (2000) Secreted Frizzled-Related Proteins Inhibit Motility and Promote Growth of Human Malignant Glioma Cells. Oncogene, 19, 4210-4220.
https://doi.org/10.1038/sj.onc.1203783
[22] Schiefer, L., Visweswaran, M., Perumal, V., Arfuso, F., Groth, D., Newsholme, P., Warrier, S. and Dharmarajan, A. (2014) Epigenetic Regulation of the Secreted Frizzled-Related Protein Family in Human Glioblastoma Multiforme. Cancer Gene Therapy, 21, 297-303.
https://doi.org/10.1038/cgt.2014.30
[23] Götze, S., Wolter, M., Reifenberger, G., Müller, O. and Sievers, S. (2010) Frequent Promoter Hypermethylation of Wnt Pathway Inhibitor Genes in Malignant Astrocytic Gliomas. International Journal of Cancer, 126, 2584-2593.
https://doi.org/10.1002/ijc.24981
[24] Ramachandran, I., Ganapathy, V., Gillies, E., Fonseca, I., Sureban, S.M., Houchen, C.W., Reis, A. and Queimado, L. (2014) Wnt Inhibitory Factor 1 Suppresses Cancer Stemness and Induces Cellular Senescence. Cell Death & Disease, 5, e1246.
https://doi.org/10.1038/cddis.2014.219
[25] Zheng, H., Ying, H., Wiedemeyer, R., Yan, H., Quayle, S.N., Ivanova, E., V., Paik, J.-H., Zhang, H., Xiao, Y., Perry, S.R., Hu, J., Vinjamoori, A., Gan, B., Sahin, E., Chheda, M.G., Brennan, C., Y. Wang, A., Hahn, W.C., Chin, L. and DePinho, R.A. (2010) PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 17, 497-509.
https://doi.org/10.1016/j.ccr.2010.03.020
[26] Rheinbay, E., Suvà, M.L., Gillespie, S.M., Wakimoto, H., Patel, A.P., Shahid, M., Oksuz, O., Rabkin, S.D., Martuza, R.L., Rivera, M.N., Louis, D.N., Kasif, S., Chi, A.S. and Bernstein, B.E. (2013) An Aberrant Transcription Factor Network Essential for Wnt Signaling and Stem Cell Maintenance in Glioblastoma. Cell Reports, 3, 1567-1579.
https://doi.org/10.1016/j.celrep.2013.04.021
[27] Zhang, N., Wei, P., Gong, A., Chiu, W.-T., Lee, H.-T., Colman, H., Huang, H., Xue, J., Liu, M., Wang, Y., Sawaya, R., Xie, K., Alfred Yung, W.K., Medema, R.H., He, X. and Huang, S. (2011) FoxM1 Promotes β-Catenin Nuclear Localization and Controls Wnt Target-Gene Expression and Glioma Tumorigenesis. Cancer Cell, 20, 427-442.
https://doi.org/10.1016/j.ccr.2011.08.016
[28] Joshi, K., Banasavadi-Siddegowda, Y., Mo, X., Kim, S.-H., Mao, P., Kig, C., Nardini, D., Sobol Robert, W., Chow Lionel, M.L., Kornblum, H.I, Waclaw, R., Beullens, M. and Nakano, I. (2013) MELK-Dependent FOXM1 Phosphorylation Is Essential for Proliferation of Glioma Stem Cells. Stem Cells, 31, 1051-1063.
https://doi.org/10.1002/stem.1358
[29] Kerstin, B., Nadège, P., Dierk, I. and Michael, B. (2006) Secretion of Wnt Ligands Requires Evi, a Conserved Transmembrane Protein. Cell, 125, 523-533.
https://doi.org/10.1016/j.cell.2006.04.009
[30] Augustin, I., Goidts, V., Bongers, A., Kerr, G., Vollert, G., Radlwimmer, B., Hartmann, C., Herold‐Mende, C., Reifenberger, G., von Deimling, A. and Boutros, M. (2012) The Wnt Secretion Protein Evi/Gpr177 Promotes Glioma Tumourigenesis. Cancer Research, 72, 3240.
https://doi.org/10.1158/1538-7445.AM2012-3240
[31] Ji, H., Wang, J., Nika, H., Hawke, D., Keezer, S., Ge, Q., Fang, B., Fang, X., Fang, D., Litchfield, D.W., Aldape, K. and Lu, Z. (2009) EGF-Induced ERK Activation Promotes CK2-Mediated Disassociation of Alpha-Catenin from Beta-Catenin and Transactivation of Beta-Catenin. Molecular Cell, 36, 547-559.
https://doi.org/10.1016/j.molcel.2009.09.034
[32] Huang, P.H., Xu, A.M. and White, F.M. (2009) Oncogenic EGFR Signaling Networks in Glioma. Science Signaling, 2, re6.
https://doi.org/10.1126/scisignal.287re6
[33] Qian, X., Bradley, R., Liang, K., Koeman, J., Ascierto, M.L., Worschech, A., De Giorgi, V., Wang, E., Kefene, L., Su, Y., Essenburg, C., Kaufman, D.W., DeKoning, T., Enter, M.A., O’Rourke, T.J., Marincola, F.M. and Vande Woude, G.F. (2012) Hepatocyte Growth Factor (HGF) Autocrine Activation Predicts Sensitivity to MET Inhibition in Glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 109, 570-575.
https://doi.org/10.1073/pnas.1119059109
[34] Stine Asferg, P., Rikke Hedegaard, D., Simon Kjær, H., Munthe Sune, K.A., Michael Tveden, G., Helle, W., Tine, R., Christoph Patrick, B., Steinbjørn, H. and Bjarne Winther, K. (2015) High Levels of c-Met Is Associated with Poor Prognosis in Glioblastoma. Journal of Neuro-Oncology, 122, 517-527.
https://doi.org/10.1007/s11060-015-1723-3
[35] Liu, W., Fu, Y., Xu, S., Ding, F., Zhao, G., Zhang, K., Du, C., Pang, B. and Pang, Q. (2011) c-Met Expression Is Associated with Time to Recurrence in Patients with Glioblastoma Multiforme. Journal of Clinical Neuroscience, 18, 119-121.
https://doi.org/10.1016/j.jocn.2010.05.010
[36] Olmez, O.F., Cubukcu, E., Evrensel, T., Kurt, M., Avci, N., Tolunay, S., Bekar, A., Deligonul, A., Hartavi, M., Alkis, N. and Manavoglu, O. (2014) The Immunohistochemical Expression of c-Met Is an Independent Predictor of Survival in Patients with Glioblastoma Multiforme. Clinical and Translational Oncology, 16, 173-177.
https://doi.org/10.1007/s12094-013-1059-4
[37] Louis, D.N. (2006) Molecular Pathology of Malignant Gliomas. Annual Review of Pathology, 1, 97-117.
https://doi.org/10.1146/annurev.pathol.1.110304.100043
[38] Kim, K.H., Seol, H.J., Kim, E.H., Rheey, J., Jin, H.J., Lee, Y., Joo, K.M., Lee, J. and Nam, D.-H. (2013) Wnt/β-Catenin Signaling Is a Key Downstream Mediator of MET Signaling in Glioblastoma Stem Cells. Neuro-Oncology, 15, 161-171.
https://doi.org/10.1093/neuonc/nos299
[39] Pasca di Magliano, M. and Hebrok, M. (2003) Hedgehog Signalling in Cancer Formation and Maintenance. Nature Reviews Cancer, 3, 903-911.
https://doi.org/10.1038/nrc1229
[40] Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G., Mack, S., Bouffet, E., Clifford, S.C., Hawkins, C.E., French, P., Rutka, J.T., Pfister, S. and Taylor, M.D. (2011) Medulloblastoma Comprises Four Distinct Molecular variants. Journal of Clinical Oncology, 29, 1408-1414.
https://doi.org/10.1200/JCO.2009.27.4324
[41] Zinke, J., Schneider, F.T., Harter, P.N., Thom, S., Ziegler, N., Toftgård, R., Plate, K.H. and Liebner, S. (2015) β-Catenin-Gli1 Interaction Regulates Proliferation and Tumor Growth in Medulloblastoma. Molecular Cancer, 14, Article No. 17.
https://doi.org/10.1186/s12943-015-0294-4
[42] Chandra, V., Das, T., Gulati, P., Biswas, N.K., Rote, S., Chatterjee, U., Ghosh, S.N., Deb, S., Saha, S.K., Chowdhury, A.K., Ghosh, S., Rudin, C.M., Mukherjee, A., Basu, A. and Dhara, S. (2015) Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters. PLoS ONE, 10, e0116390.
https://doi.org/10.1371/journal.pone.0116390
[43] Jin, X., Jeon, H.-Y., Joo, K.M., Kim, J.-K., Jin, J., Kim, S.H., Kang, B.G., Beck, S., Lee, S.J., Kim, J.K., Park, A.-K., Park, W.-Y., Choi, Y.-J., Nam, D.-H. and Kim, H. (2011) Frizzled 4 Regulates Stemness and Invasiveness of Migrating Glioma Cells Established by Serial Intracranial Transplantation. Cancer Research, 71, 3066-3075.
https://doi.org/10.1158/0008-5472.CAN-10-1495
[44] Kamino, M., Kishida, M., Kibe, T., Ikoma, K., Iijima, M., Hirano, H., Tokudome, M., Chen, L., Koriyama, C., Yamada, K., Arita, K. and Kishida, S. (2011) Wnt‐5a Signaling Is Correlated with Infiltrative Activity in Human Glioma by Inducing Cellular Migration and MMP‐2. Cancer Science, 102, 540-548.
https://doi.org/10.1111/j.1349-7006.2010.01815.x
[45] Pu, P., Zhang, Z., Kang, C., Jiang, R., Jia, Z., Wang, G. and Jiang, H. (2009) Downregulation of Wnt2 and β-Catenin by siRNA Suppresses Malignant Glioma Cell Growth. Cancer Gene Therapy, 16, 351-361.
https://doi.org/10.1038/cgt.2008.78
[46] Gurpinar, E., Grizzle, W.E. and Piazza, G.A. (2014) NSAIDs inhibit tumorigenesis, but how? Clinical cancer research, 20, 1104-1113.
https://doi.org/10.1158/1078-0432.CCR-13-1573
[47] Lan, F., Xiao, Y., Han, L., Shi, Z., Yang, Y., Pu, P., Yao, Z. and Kang, C. (2012) Genome-Wide Identification of TCF7L2/TCF4 Target miRNAs Reveals a Rolefor miR-21 in Wnt-Driven Epithelial Cancer. International Journal of Oncology, 40, 519-526.
https://doi.org/10.3892/ijo.2011.1215
[48] Sareddy, G.R., Kesanakurti, D., Kirti, P.B. and Babu, P.P. (2013) Nonsteroidal Anti-Inflammatory Drugs Diclofenac and Celecoxib Attenuates Wnt/β-Catenin/Tcf Signaling Pathway in Human Glioblastoma Cells. Neurochemical Research, 38, 2313-2322.
https://doi.org/10.1007/s11064-013-1142-9
[49] Kim, Y., Kim, K.H., Lee, J., Lee, Y.-A., Kim, M., Lee, S.J., Park, K., Yang, H., Jin, J., Joo, K.M., Lee, J. and Nam, D.-H. (2012) Wnt Activation Is Implicated in Glioblastoma Radioresistance. Cancer Research, 72, 3458.
https://doi.org/10.1158/1538-7445.AM2012-3458
[50] Fujii, N., You, L., Xu, Z., Uematsu, K., Shan, J., He, B., Mikami, I., Edmondson, L.R., Neale, G., Zheng, J., Kiplin, G.R. and Jablons, D.M. (2007) An Antagonist of Dishevelled Protein-Protein Interaction Suppresses Beta-Catenin-Dependent Tumor Cell Growth. Cancer Research, 67, 573-579.
https://doi.org/10.1158/0008-5472.CAN-06-2726
[51] He, B., You, L., Uematsu, K., Xu, Z., Lee, A.Y., Matsangou, M., McCormick, F. and Jablons, D.M. (2004) A Monoclonal Antibody against Wnt-1 Induces Apoptosis in Human Cancer Cells. Neoplasia, 6, 7-14.
https://doi.org/10.1016/S1476-5586(04)80048-4
[52] You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Fujii, N., Mikami, I., Reguart, N., McIntosh, J.K., Kashani-Sabet, M., McCormick, F. and Jablons, D.M. (2004) An Anti-Wnt-2 Monoclonal Antibody Induces Apoptosis in Malignant Melanoma Cells and Inhibits Tumor Growth. Cancer Research, 64, 5385-5389.
https://doi.org/10.1158/0008-5472.CAN-04-1227
[53] Säfholm, A., Tuomela, J., Rosenkvist, J., Dejmek, J., Härkönen, P. and Andersson, T. (2008) The Wnt-5a-Derived Hexapeptide Foxy-5 Inhibits Breast Cancer Metastasis in Vivo by Targeting Cell Motility. Clinical Cancer Research, 14, 6556-6563.
https://doi.org/10.1158/1078-0432.CCR-08-0711
[54] Chen, B., Dodge, M.E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W., Kilgore, J., Williams, N.S., Roth, M.G., Amatruda, J.F., Chen, C. and Lum, L. (2009) Small Molecule-Mediated Disruption of Wnt-Dependent Signaling in Tissue Regeneration and Cancer. Nature Chemical Biology, 5, 100-107.
https://doi.org/10.1038/nchembio.137