慢性鼻–鼻窦炎伴鼻息肉的单核苷酸多态性研究进展
Research Progress of Single Nucleotide Polymorphisms in Chronic Sinusitis with Nasal Polyps
DOI: 10.12677/ACM.2021.118493, PDF, HTML, XML, 下载: 345  浏览: 460  科研立项经费支持
作者: 吴明海, 张 婷, 程 友*:东部战区总医院耳鼻咽喉–头颈外科,江苏 南京;张 倩:东部战区总医院耳鼻咽喉–头颈外科,江苏 南京;河南大学附属医院耳鼻咽喉–头颈外科,河南 开封
关键词: 慢性鼻窦炎伴鼻息肉单核苷酸多态性炎症因子Chronic Sinusitis with Nasal Polyps Single Nucleotide Polymorphisms Inflammatory Factors
摘要: 慢性鼻窦炎伴鼻息肉(CRSwNP)的发病机制尚不明确,然而其易复发特点对患者的生活质量及经济压力影响巨大。研究表明鼻息肉的发病具有家族易感性,同时慢性鼻窦炎伴鼻息肉是一种多基因疾病。CRSwNP的基因倾向被认为与单核苷酸多态性和突变导致编码促炎免疫蛋白质的形成有关,单核苷酸多态性在阐明人类疾病易感性、药物反应性及疾病临床表现多样性等方面都发挥着重要作用。
Abstract: The pathogenesis of chronic sinusitis with nasal polyps (CRSwNP) is still unclear, but its relapsing characteristics have a significant impact on patients’ quality of life and economic pressure. It has been shown that chronic sinusitis with nasal polyps is a polygenic disease with familial susceptibility. The genetic tendency of CRSwNP is believed to be related to single nucleotide polymorphisms and mutations that lead to the formation of coding pro-inflammatory immune proteins. Single nucleotide polymorphisms play an important role in elucidation of human disease susceptibility, drug reactivity and the diversity of clinical manifestations of diseases.
文章引用:吴明海, 张倩, 张婷, 程友. 慢性鼻–鼻窦炎伴鼻息肉的单核苷酸多态性研究进展[J]. 临床医学进展, 2021, 11(8): 3398-3404. https://doi.org/10.12677/ACM.2021.118493

1. 引言

慢性鼻窦炎(Chronic rhinosinusitis, CRS)可以分为伴有息肉和不伴有息肉 [1] [2] 两种类型。尽管慢性鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps, CRSwNP)仅占所有慢性鼻窦炎的25%~30%,但是其对患者的生活质量影响巨大。在一般人群中,鼻息肉的总患病率相对较高,占1%~4%。明确CRSwNP的发病机制是极其重要的,也可为其治疗提供指导方向。已发现鼻息肉具有家族易感性,并被认为是一种多基因疾病。然而到目前为止,还没有易感因素被确定。

基因多态性(polymorphism)也称遗传多态性(genetic polymorphism),指在一个生物群体中,某个基因位点同时存在两种或两种以上的等位基因,从而形成多种不同基因型个体。基因多态性分类有三种:限制性片段长度多态性(restriction fragment length polymorphism, RFLP)、DNA重复序列多态性、单核苷酸多态性(single nucleotide polymorphisms, SNP)。其中SNP占人类基因多态性的90%以上,在进化史仅发生一次,具有更为稳定的特征,是人类基因组DNA序列变异的主要形式 [3]。基因多态性在阐明人类疾病易感性、药物反应性及疾病临床表现多样性等方面都发挥着重要作用。通过基因多态性的研究,可从基因水平揭示不同个体间生物活性物质功能及效应差异的本质,为患者提供最适宜的药物治疗以及早期采取有效措施避免疾病发生等。研究表明,CRSwNP患者的基因倾向被认为与SNP和突变导致编码促炎免疫蛋白质的形成有关。细胞因子的SNP对于疾病的易感性可作为重要的遗传预测因子 [4],所以研究哪些基因的SNP和CRSwNP的发病相关是极其重要的。

2. 炎症因子及其受体基因的SNP与CRSwNP发病易感性分析

2.1. IL-4和IL-6

IL-4是一种Th2细胞因子,在IgE的调节过程中起重要作用。IL-4可以抑制嗜酸性粒细胞的凋亡和通过诱导嗜酸性粒细胞趋化和活化从而促进嗜酸性炎症。IL-4被认为可以使被激活的B细胞增强免疫球蛋白(IgE和IgG1)的产生,因而在变应性疾病并存鼻息肉的发展过程中起着重要的作用。IL-4基因定位于5q23-5q31,紧邻与哮喘相关的基因簇5q31-33 [5]。Yea [6] 等通过61例CRSwNP患者,70例对照组发现在韩国人群中IL-4 C-590T的T等位基因参与CRSwNP的发病,但是在他们的研究中并未发现IL-4的基因单核苷酸多态性与鼻息肉患者的IgE水平相关。Mrowicka M. [4] 等通过208例CRSwNP,对照组200例也证实了在波兰人中IL-4C-590T的T等位基因可以增加IL-4基因的含量及活动,从而参与CRSwNP的发病,而且证明了IL-4的基因多态性可以提高CRSwNP中IgE的水平。很多研究发现IL-4C-590T基因多态性和总IgE水平增加有关,但是也有一部分研究发现无关 [7]。

IL-6定位于7号染色体,IL-6协调慢性炎症和参与适应性免疫调节T细胞的分化和激活,诱导Th2细胞因子的产生。IL-6基因的174位点的G或C等位基因,它们的变化是有一定功能,可以修订转录调节从而出现促炎的基因型。在Kosugi E.M. [8] 等的研究中发现在CRSwNP中IL-6基因的174位点的GG基因型比对照组高,相似的结果发现在哮喘患者中。IL-6基因174位点的GG基因型可以促进IL-6的产生和分泌,参与CRSwNP的发病,而C等位基因可以减少炎症从而抑制CRSwNP及哮喘的发病 [9]。

2.2. TNF-a、IL-1和IL-33

TNF-a (肿瘤坏死因子)和IL-1 (白介素1)是促炎细胞因子基因家族的成员,它们由各种细胞产生,包括上皮细胞和巨噬细胞。这些细胞因子在慢性炎症过程中起协调作用,TNF-a和IL-1可以调节黏附因子在CRSwNP中的表达,从而调控嗜酸性粒细胞向固有层的渗出。TNF-a基因位于6号染色体的短臂上,Bernstein J.M.等 [9] 通过179例CRSwNP患者和153例对照组发现TNF-a基因的启动子区域308位点的A等位基因与CRSwNP的发病存在易感性。Erbek S.S.等 [10] 82例CRSwNP患者与106例对照组比较,发现在土耳其人群中IL-1A (-4845GT和-4845TT [rs17561])、IL-1B (-511CC [rs16944]、TNF (-238AA [rs361525] 和-308GA [rs1800629]),这些位点多态性均与CRSwNP的发病相关。CIAS1 (cold-induced autoinflammatory syndrome)基因位于1号染色体,研究表明这种基因在参与IL-1b的炎症过程中起重要的作用 [11]。Köseoğlu S. [12] 等发现CIAS1基因的(c.732GA和AA)基因型与CRSwNP的发病有关。

IL-33是IL-1的超家族的一个新成员,IL-1的超家族成员也包括IL-1b和IL-18。像IL-1b和IL-18一样,IL-33也被发现具有强烈的免疫功能。IL-1b和IL-18可以促进Th1反应,IL-33却可以刺激调节Th2细胞因子的产生,比如IL-4、IL-5和IL-33,而产生的因子也在CRSwNP的发病机制中重要作用 [13]。Buysschaert I.D. [14] 等通过284例CRSwNP患者和健康对照组427例发现IL-33 (rs3939286)的A等位基因和CRSwNP的发病具有易感性。

2.3. LTC4S

LTC4S基因可以编码白三烯C4合酶或谷胱甘肽S-转移酶2,CYSLTR1基因可以编码半胱氨酰白三烯受体1,PTGDR基因可以编码前列腺素D2受体,NOS2基因可以编码一氧化氮合成酶,从而参与慢性炎症的过程,导致CRSwNP发病 [15] [16] [17]。Benito Pescador D.等 [18] 通过241例CRSwNP患者与245例对照组比较,发现高加索人群中PTGDR (-613C>T, -549T>C, -441C>T, -197T>C),LTC4S (-444A>C),CYSLTR1 (927T>C)和NOS2A-1VNTR (CCTTT) n位点多态性与CRSwNP发病具有相关性。

2.4. 其它炎性因子

Cyclooxygenase-2 (COX-2)可以诱发炎症,并积极参与促炎作用的前列腺素的合成。亦也有人认为Mesenchymal-epithelial transition factor (MET)是一种跨膜受体酪氨酸激酶受体和原癌基因。Sitarek P.等 [19] 通过195例CRSwNP与200例对照组比较,发现在高加索人中COX-2基因(-765G/C)和MET-14C/G基因多态性可以增加CRSwNP的易感性。Cyclic nucleotide phosphodiesterases (PDEs)参与信号转导和炎症具有重要的作用,Apuhan T. [20] 等发现PDE4D (rs1588265)多态性与鼻息肉的相关性高。

CD14主要是脂多糖或吸入性毒素的受体。LPS和一些细菌壁产物可以刺激抗原提呈细胞(如树突状细胞)可通过可溶性CD14的行动产生白介素,从而参与慢性炎症。Yazdani N.等 [21] 在伊朗人群中通过106例CRSwNP,对照组87例,发现CD14的启动子基因C-159T的CC基因型和CT基因型与CRSwNP的发病易感性相关,CD14基因的单核苷酸多态性与IgE的水平是否相关并未发现。

乳铁蛋白(lactoferrin, LF)是一种重要的非血红素铁结合糖蛋白,中性粒细胞颗粒中具有杀菌活性的单体糖蛋白。Zielinska [22] 等报道LF基因(140A/G)的多态性和OSF-2 (-33C/G)的多态性在鼻息肉的发病中具有重要的作用。

3. 组织重塑因子基因的SNP与CRSwNP发病易感性分析

MMP金属蛋白酶,是一种锌钙依赖性内肽酶的家族,可以降解几乎所有的细胞外基质成分,在气道重塑中极其重要,金属蛋白酶参与细胞间的信号转导、细胞转移和血管的生成及凋亡。Molga P.等 [23] 证明了MMP-1基因-160701G/2G (rs1799750)多态性与CRSwNP发病具有相关性。Erbek SS等 [24] 证明了MMP-9基因-(1562C>T)启动子基因多态性与伴有阿司匹林不耐受三联征的鼻息肉发病具有易感性。

4. 癌基因的SNP与CRSwNP发病易感性分析

Zaravinos A.等 [25] 发现了K-ras的第11和第12位以及H-ras的第12位遗传密码子突变与鼻息肉病发生的相关程度特别高,以及在鼻息肉病中两种基因的含量也增高,N-ras在鼻息肉病中很少突变以及含量下降,故他们认为N-ras含量的下调和鼻息肉的形成有关。

5. 氧自由基和抗氧化剂基因的SNP与CRSwNP发病易感性分析

NO是一种氧自由基分子,由iNOS诱导合成。在鼻息肉患者中NO含量增加。Akyigit A.等 [26] 发现在iNOS基因-277A/G多态性的GG基因型在嗜酸性CRSwNP和对照组显著不同,catalase基因-21A/T多态性(抗氧化剂)的TT基因型在嗜酸性慢性鼻窦炎鼻息肉和对照组显著不同,而SOD2A16V(C/T)多态性的CC基因型和对照组没有显著差异,表明iNOS基因-277A/G多态性和catalase基因-21A/T多态性与CRSwNP的发病具有相关性,而SOD2A16V(C/T)多态性与CRSwNP的发病无关。

谷胱甘肽转移酶是一种主要的酶,它参与一些内源性或外源性来源的亲电试剂的激活和解毒以及它们的代谢 [27] [28]。Ozcan C.等 [29] 发现GSTT1的无效基因型(null genotype)使患CRSwNP的风险增加2倍。

6. 转录因子基因的的SNP与CRSwNP发病易感性分析

CIITA是MHCII的转录活化因子。Bae J.S.等 [30] 报道CIITA (rs12932187和rs11074938)可以增加CRSwNP的发病易感性。RYBP是一种调节转录的基因。Zhang Y.等 [31] 发现RYBP基因(rs4532099)和CRSwNP的患病具有易感性。ERCC是一种进化保守的ATP依赖性DNA解旋酶,其基因多态性会降酶的活性,导致核苷酸切除修复(Nucleotide excision repair, NER)能力下降,从而导致CRSwNP发病风险性增加。Khlifi R.等 [32] 发现在Tunisian人群中ERCC3 (excision repair cross-complementing rodent repair deficiency gene3) (7122>G)和ERCC2 (Lys751Gln)的多态性可以增加CRSwNP的发病风险,特别是在有高血镉水平的患者中。

FCεR1α基因定位于1q23染色体,由7个外显子和2个启动子组成,一个远端和近端启动子。FCεR1α编码高亲和力IgE受体的配体结合亚基,即α链,可以调节总IgE的产生。Dar S.A.等 [33] 发现FCεR1α基因区域的5个单核苷酸多态性(SNPs)与CRSwNP的发病存在相关性,并发现在CRSwNP患者中rs2427827的SNP与IgE的水平相关。

7. 其它基因的SNP与CRSwNP发病易感性分析

DCBLD2 (the human discoidin, CUB and LCCL domain containing 2)基因与neuropilin-1 (NRP1)结构具有同源性,它的蛋白质在鼻腔鼻窦组织的上皮细胞表达可以阻止抗体从而诱导CRSwNP患者的鼻腔上皮细胞的凋亡 [34]。同时DCBLD2可是信号素的细胞表面受体,作为分泌和细胞表面蛋白参与Th1/Th2分化和气道炎症 [35]。Pasaje C.F.等 [36] 等在韩国人群中发现DCBLD2_ht1基因的rs828618位点的基因多态性在哮喘伴有鼻息肉组显著相关。

8. 小结

CRSwNP的病因尚未明确,目前一些研究已表明许多细胞因子参与其发病过程。CRSwNP的基因易感性已经被证实,了解其细胞因子的基因单核苷酸多态性可揭示细胞因子在CRSwNP影响发病的途径,为开展个体化治疗提供依据。同时揭示基因突变型在CRSwNP中的发病,为基因转录阻断剂的研究提供方向。

基金项目

中国博士后科学基金面上资助项目(2017M613438)。

NOTES

*通讯作者。

参考文献

[1] Akdis, C.A., Bachert, C., Cingi, C., et al. (2013) Endotypes and Phenotypes of Chronic Rhinosinusitis: A PRACTALL Document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. The Journal of Allergy and Clinical Immunology, 131, 1479-1490.
https://doi.org/10.1016/j.jaci.2013.02.036
[2] Shi, J.B., Fu, Q.L., Zhang, H., et al. (2015) Epidemiology of Chronic Rhinosinusitis: Results from a Cross-Sectional Survey in Seven Chinese Cities. Allergy, 70, 533-539.
https://doi.org/10.1111/all.12577
[3] 段宏, 张罗, 王向东, 等. 单核苷酸多态性与变应性疾病[J]. 国际耳鼻咽喉头颈外科杂志, 2008, 32(2): 63-66.
[4] Mrowicka, M., Zielinska-Blizniewska, H., Milonski, J., et al. (2014) Association of IL1β and IL4 Gene Polymorphisms with Nasal Polyps in a Polish Population. Molecular Biology Reports, 41, 4653-4658.
https://doi.org/10.1007/s11033-014-3336-x
[5] Noguchi, E., Yokouchi, Y., Zhang, J., et al. (2005) Positional Identification of an Asthma Susceptibility Gene on Human Chromosome 5q33. American Journal of Respiratory and Critical Care Medicine, 172, 183-188.
https://doi.org/10.1164/rccm.200409-1223OC
[6] Yea, S.S., Yang, Y.I., Park, S.K., et al. (2006) Interleukin-4 C-590T Polymorphism Is Associated with Protection against Nasal Polyps in a Korean Population. American Journal of Rhinology, 20, 550-553.
https://doi.org/10.2500/ajr.2006.20.2936
[7] Liu, X., Beaty, T.H., Deindl, P., et al. (2003) Associations between Total Serum IgE Levels and the 6 Potentially Functional Variants within the Genes IL4, IL13, and IL4RA in German Children: The German Multicenter Atopy Study. The Journal of Allergy and Clinical Immunology, 112, 382-388.
https://doi.org/10.1067/mai.2003.1635
[8] Kosugi, E.M., de Camargo-Kosugi, C.M., Weckx, L.L., et al. (2009) Interleukin-6-174 G/C Promoter Polymorphism and Nasal Polyposis. Rhinology, 47, 400-404.
https://doi.org/10.4193/Rhin08.226
[9] Bernstein, J.M., Anon, J.B., Rontal, M., et al. (2009) Genetic Polymorphisms in Chronic Hyperplastic Sinusitis with Nasal Polyposis. The Laryngoscope, 119, 1258-1264.
https://doi.org/10.1002/lary.20239
[10] Erbek, S.S., Yurtcu, E., Erbek, S., et al. (2007) Proinflammatory Cytokine Single Nucleotide Polymorphisms in Nasal Polyposis. Archives of Otolaryngology—Head & Neck Surgery, 133, 705-709.
https://doi.org/10.1001/archotol.133.7.705
[11] Agostini, L., Martinon, F., Burns, K., et al. (2004) NALP3 Forms an IL-1beta-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder. Immunity, 20, 319-325.
https://doi.org/10.1016/S1074-7613(04)00046-9
[12] Köseoğlu, S., Özcan, K.M., İkincioğullari, A., et al. (2015) Evaluation of Autoinflammatory Disease Genes in Nasal Polyposis. Turkish Journal of Medical Sciences, 45, 136-140.
https://doi.org/10.3906/sag-1312-104
[13] Fokkens, W., Lund, V. and Mullol, J. (2007) EP3OS 2007: European Position Paper on Rhinosinusitis and Nasal Polyps 2007 a Summary for Otorhinolaryngologists. Rhinology, 45, 97-101.
[14] Buysschaert, I.D., Grulois, V., Eloy, P., et al. (2010) Genetic Evidence for a Role of IL33 in Nasal Polyposis. Allergy, 65, 616-622.
https://doi.org/10.1111/j.1398-9995.2009.02227.x
[15] Tantisira, K.G. (2009) Genetics and Pharmacogenetics of the Leukotriene Pathway. The Journal of Allergy and Clinical Immunology, 124, 422-427.
https://doi.org/10.1016/j.jaci.2009.06.035
[16] Yoshimura, T., Yoshikawa, M., Otori, N., et al. (2008) Correlation between the Prostaglandin D(2)/E(2) Ratio in Nasal Polyps and the Recalcitrant Pathophysiology of Chronic Rhinosinusitis Associated with Bronchial Asthma. Allergology International: Official Journal of the Japanese Society of Allergology, 57, 429-436.
https://doi.org/10.2332/allergolint.O-08-545
[17] Parikh, A., Scadding, G.K., Gray, P., et al. (2002) High Levels of Nitric Oxide Synthase Activity Are Associated with Nasal Polyp Tissue from Aspirin-Sensitive Asthmatics. Acta Oto-Laryngologica, 122, 302-305.
https://doi.org/10.1080/000164802753648204
[18] Benito Pescador, D., Isidoro-García, M., García-Solaesa, V., et al. (2012) Genetic Association Study in Nasal Polyposis. Journal of Investigational Allergology & Clinical Immunology, 22, 331-340.
[19] Sitarek, P., Zielinska-Blizniewska, H., Dziki, L., et al. (2012) Association of the -14C/G MET and the -765G/C COX-2 Gene Polymorphisms with the Risk of Chronic Rhinosinusitis with Nasal Polyps in a Polish Population. DNA and Cell Biology, 31, 1258-1266.
https://doi.org/10.1089/dna.2011.1453
[20] Apuhan, T., Gepdiremen, S. and Arslan, A.O. (2013) Evaluation of Patients with Nasal Polyps about the Possible Association of Desmosomal Junctions, RORA and PDE4D Gene. European Review for Medical and Pharmacological Sciences, 17, 2680-2683.
[21] Yazdani, N., Amoli, M.M., Naraghi, M., et al. (2012) Association between the Functional Polymorphism C-159T in the CD14 Promoter Gene and Nasal Polyposis: Potential Role in Asthma. Journal of Investigational Allergology & Clinical Immunology, 22, 406-411.
[22] Zielinska-Blizniewska, H., Sitarek, P., Milonski, J., et al. (2012) Association of the -33C/G OSF-2 and the 140A/G LF Gene Polymorphisms with the Risk of Chronic Rhinosinusitis with Nasal Polyps in a Polish Population. Molecular Biology Reports, 39, 5449-5457.
https://doi.org/10.1007/s11033-011-1345-6
[23] Molga, P., Fendler, W. and Borowiec, M. (2016) Impact of -1607 1G/2G MMP1 Gene Polymorphism on the Morbidity and Clinical Course of Chronic Rhinosinusitis with Nasal Polyps. Otolaryngologiapolska, 70, 24-33.
https://doi.org/10.5604/00306657.1193692
[24] Erbek, S.S., Yurtcu, E. and Erbek, S. (2009) Matrix Metalloproteinase-9 Promoter Gene Polymorphism (-1562C > T) in Nasal Polyposis. American Journal of Rhinology & Allergy, 23, 568-570.
https://doi.org/10.2500/ajra.2009.23.3371
[25] Zaravinos, A., Bizakis, J., Soufla, G., et al. (2007) Mutations and Differential Expression of the RAS Family Genes in Human Nasal Polyposis. International Journal of Oncology, 31, 1051-1059.
[26] Akyigit, A., Keles, E., Etem, E.O., et al. (2017) Genetic Polymorphism of Antioxidant Enzymes in Eosinophilic and Non-Eosinophilic Nasal Polyposis. European Archives of Oto-Rhino-Laryngology, 274, 267-273.
https://doi.org/10.1007/s00405-016-4259-z
[27] Tamer, L., Calikoğlu, M., Ates, N.A., et al. (2004) Glutathione-S-Transferase Gene Polymorphisms (GSTT1, GSTM1, GSTP1) as Increased Risk Factors for Asthma. Respirology (Carlton, Vic.), 9, 493-498.
https://doi.org/10.1111/j.1440-1843.2004.00657.x
[28] Arbag, H., Cora, T., Acar, H., et al. (2006) Lack of Association between the Glutathione-s-Transferase Genes (GSTT1 and GSTM1) and Nasal Polyposis. Rhinology, 44, 14-18.
[29] Ozcan, C., Tamer, L. and Ates, N.A. (2010) The Glutathione-S-Transferase Gene Polymorphisms (Gstt1, Gstm1, and Gstp1) in Patients with Non-Allergic Nasal Polyposis. European Archives of Oto-Rhino-Laryngology, 267, 227-232.
https://doi.org/10.1007/s00405-009-1066-9
[30] Bae, J.S., Pasaje, C.F., Park, B.L., et al. (2013) Genetic Association Analysis of CIITA Variations with Nasal Polyp Pathogenesis in Asthmatic Patients. Molecular Medicine Reports, 7, 927-934.
https://doi.org/10.3892/mmr.2012.1251
[31] Zhang, Y., Endam, L.M., Filali-Mouhim, A., et al. (2012) Polymorphisms in RYBP and AOAH Genes Are Associated with Chronic Rhinosinusitis in a Chinese Population: A Replication Study. PLoS ONE, 7, e39247.
https://doi.org/10.1371/journal.pone.0039247
[32] Khlifi, R., Olmedo, P., Gil, F., et al. (2017) Gene-Environment Interactions between ERCC2, ERCC3, XRCC1 and Cadmium Exposure in Nasal Polyposis Disease. Journal of Applied Genetics, 58, 221-229.
https://doi.org/10.1007/s13353-016-0375-0
[33] Dar, S.A., Rai, G., Ansari, M.A., et al. (2018) FcɛR1α Gene Polymorphism Shows Association with High IgE and Anti-FcɛR1α in Chronic Rhinosinusitis with Nasal Polyposis. Journal of Cellular Biochemistry, 119, 4142-4149.
https://doi.org/10.1002/jcb.26619
[34] Lee, H.S. and Myers, A. (2009) Vascular Endothelial Growth Factor Drives Autocrine Epithelial Cell Proliferation and Survival in Chronic Rhinosinusitis with Nasal Polyposis. American Journal of Respiratory and Critical Care Medicine, 180, 1056-1067.
https://doi.org/10.1164/rccm.200905-0740OC
[35] Smith, E.P., Shanks, K., Lipsky, M.M., et al. (2011) Expression of Neuroimmune Semaphorins 4A and 4D and Their Receptors in the Lung Is Enhanced by Allergen and Vascular Endothelial Growth Factor. BMC Immunology, 12, 30.
https://doi.org/10.1186/1471-2172-12-30
[36] Pasaje, C.F., Bae, J.S., Park, B.L., et al. (2012) DCBLD2 Gene Variations Correlate with Nasal Polyposis in Korean Asthma Patients. Lung, 190, 199-207.
https://doi.org/10.1007/s00408-011-9354-8