雾化吸入用药在新冠肺炎疫情中的研究现状
Research Status of Aerosol Inhalation Drugs in COVID-19 Outbreak
DOI: 10.12677/ACM.2021.118508, PDF, HTML, XML, 下载: 404  浏览: 931 
作者: 秦浩然:青海大学,青海 西宁;李忠诚#:青海大学附属医院胸外科,青海 西宁
关键词: 新型冠状病毒肺炎2019新型冠状病毒雾化吸入给药途径Corona Virus Disease 2019 SARS-CoV-2 Aerosol Inhalation Administration Route
摘要: 新型冠状病毒肺炎(Corona Virus Disease 2019, COVID-19) (以下简称“新冠肺炎”)已经造成了全球大爆发、大流行,新冠肺炎患者的研究和临床观察表明,2019新型冠状病毒(SARS-CoV-2)的主要靶点是肺。雾化吸入作为一种以肺为主要靶器官的直接给药方法,在治疗呼吸系统相关疾病中发挥着重要作用。但是目前,针对于COVID-19的全球大流行态势,雾化吸入用药的优势尚未被有效利用,本文旨在对新冠肺炎疫情中对雾化吸入用药的研究现状进行综述,为新冠肺炎患者治疗期间雾化吸入用药提供参考。
Abstract: COVID-19 (Corona Virus Disease 2019) (hereinafter referred to as “COVID-19”) has produced a global outbreak, pandemic, COVID-19 patient studies and clinical observations have shown that the main target of the Novel Corona virus 2019 (SARS-COV-2) is the lung. Aerosol inhalation, as a direct drug delivery method with the lung as the main target organ, plays an important role in the treatment of respiratory diseases. However, in view of the global pandemic situation of COVID-19, the advantages of aerosol inhalation medication have not been effectively utilized. This paper aims to review the research status of aerosol inhalation medication in COVID-19 epidemic, and provide reference for aerosol inhalation medication during the treatment of COVID-19 patients.
文章引用:秦浩然, 李忠诚. 雾化吸入用药在新冠肺炎疫情中的研究现状[J]. 临床医学进展, 2021, 11(8): 3487-3492. https://doi.org/10.12677/ACM.2021.118508

1. 引言

新型冠状病毒肺炎(Corona Virus Disease 2019, COVID-19) (以下简称“新冠肺炎”)已经造成了全球大规模爆发,世界卫生组织已宣布其为大流行 [1]。据报道,有症状的新型冠状病毒患者表现为发热、干咳、气短和肌痛。死亡率主要源于急性肺损伤、呼吸衰竭、急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)等关联疾病。死后评估的病理报告描述了双侧弥漫性肺泡损伤,伴有水肿、肺细胞脱落、透明膜形成和大量肺栓塞 [2] [3]。它的初期症状常表现为咳嗽和发热,大约8天后,20%的患者会出现呼吸困难,大约10%的患者会出现肺部炎性浸润 [4] [5]。大约25%的住院患者在症状出现后的第10~12天出现ARDS [5]。新冠肺炎患者的研究和临床观察表明,2019新型冠状病毒(SARS-CoV-2)的主要靶点是肺 [6]。雾化吸入作为一种以肺为主要靶器官的给药方式,具有起效快、用药量少、局部药物浓度高、应用方便及全身不良反应少等众多优点,已被作为呼吸系统相关疾病重要的治疗手段 [7]。目前,针对于COVID-19的全球大流行态势,雾化吸入用药的优势尚未被有效地利用,相关研究大多停留在理论层面,雾化吸入途径也被认为存在着增加COVID-19传染的风险 [8] [9],本文旨在对新冠肺炎疫情中对雾化吸入用药的研究现状进行综述,为新冠肺炎患者治疗期间雾化吸入用药提供参考。

2. 新冠肺炎与雾化吸入用药

2.1. 一氧化氮

一氧化氮是一种内皮衍生的舒张因子,在血管信号传导、血流调节和宿主防御中发挥关键作用 [10]。当前SARS-CoV-2的总核苷酸序列显示出与SARS-CoV-1约79%的相似性 [11] [12],病理学和遗传结构的重叠使得SARS-CoV-2与更多关于SARS-CoV-1病理生理学的已有文献具有相似性。正常的一氧化氮/活性氧平衡对正常的血管功能至关重要。其在调节炎症级联反应中起关键作用,当在内皮功能下降的情况下过度激活时,炎症级联反应会导致急性肺损伤和急性呼吸窘迫综合征。缺乏一氧化氮的脉管系统受到炎症和氧气输送减弱的影响,清除有毒副产物的能力会大大降低 [13] [14] [15]。在宿主细胞中,病毒感染期间iNOS通常会升高,而在SARS-CoV-1感染中,一氧化氮通过氧亚硝酸盐等中间体通过细胞毒性反应抑制病毒复制 [16]。红细胞表面和血红蛋白四聚体β链上反应性硫醇的亚硝化作用分别稳定了溶血和氧化损伤 [17] [18],赋予一氧化氮控制新型冠状病毒红细胞相关致病过程的潜力。因为新型冠状病毒会感染内皮细胞,而内皮细胞是一氧化氮合成的主要来源,所以这种分子还能很好地应对病毒攻击。大流行中的脆弱人群可能具有较低水平的内源性一氧化氮。由一氧化氮合酶产生的一氧化氮随着年龄的增长而下降,患有慢性血管炎症的患者,如2型糖尿病、慢性阻塞性肺病的患者,可能产生较少的一氧化氮合酶 [19] [20] [21]。此外,血管紧张素转换酶活性相对于血管紧张素转换酶2活性可能在慢性血管炎症患者中升高 [22] [23]。患有潜在慢性疾病血管应激源的老年患者可能表现出血管一氧化氮水平不足,增加了他们对缺血/再灌注和缺血/再灌注损伤的脆弱性。因此,针对目标患者群体的外源性一氧化氮可能是一种治疗方法,可以减少肺部的病毒载量,促进ARDS的临床恢复。

通过上文的描述不难看出,在新冠肺炎感染的早期,给予适量的、持续的一氧化氮可能会限制向ARDS和暴发性全身衰竭的进展,并且可以减少病毒复制,下调血管紧张素转换酶,防止任何基于缺氧-复氧/缺血再灌注的炎症的发作,控制细胞因子级联,允许去除细胞碎片,限制脂质过氧化和伴随的细胞损伤,降低有害的血管通透性并保持适当的血流。

2.2. 吸入性糖皮质激素(Inhaled Corticosteroids, ICS)

ICS作为经典的雾化吸入用药,常常单独使用或与支气管扩张剂联合使用,被广泛用于哮喘的治疗 [24],与支气管扩张剂联合使用在部分COPD患者的管理中发挥作用 [25]。在新冠肺炎大流行期间使用ICS时,关于其对病毒感染和恶化率的影响存在许多争论。过去的研究已经证实,在哮喘和慢性阻塞性肺疾病中使用ICS与上呼吸道感染风险增加相关 [26] [27]。在慢性阻塞性肺疾病患者中,使用ICS与更高的肺炎患病率和肺部微生物组的变化有关,尽管这并不是呼吸系统病毒检测的变化 [28] [29]。但有不同的研究提示ICS可以成为新冠肺炎的治疗干预。首先,在有急性呼吸窘迫综合征风险的患者中使用ICS已被证明可以改善生理状况并降低炎症标记物水平 [30]。在入院前使用ICS的高危患者中,甚至在控制年龄、性别和慢性呼吸系统疾病后,ARDS也减少了50% [31]。此外,ICS的使用似乎还可以改善肺生理状况 [32]。其次,体外数据表明ICS在抑制感染上皮细胞的冠状病毒复制(包括SARSCoV-2)中起作用 [33]。在体外,ICS已被证明可以减弱导致病毒清除延迟的抗病毒先天免疫反应 [34] [35]。在以前的新的冠状病毒爆发(SARS, MERS)中,关于ICS的研究没有显示出益处或危害 [36]。然而,在被诊断为新冠肺炎的患者中,地塞米松显著降低了28天的死亡率,特别是在那些接受补充氧气或机械通气的患者 [37]。

目前,没有确凿证据表明在冠状病毒引起的急性呼吸道感染中,疾病前使用或持续服用ICS是否是不良或有益结果的一个因素。这迫切需要进一步的数据和研究。临床医生应该意识到,没有证据支持在使用这些药物治疗的患者中停用ICS,这样做很可能产生不利的影响。使用ICS时病情稳定的哮喘和慢阻肺患者应继续治疗。

2.3. 羟氯喹

羟氯喹(Hydroxychloroquine, HCQ)为4-氨基喹啉衍生物类抗疟药,这是一种已获批准的抗疟疾和抗风湿剂,具有众所周知的安全性 [38] [39]。HCQ在体外显示出了抗SARS-CoV的活性 [40],这使得其在新冠肺炎大流行期间被提出将其作为用于治疗冠状病毒疾病的再利用药物之一。但是它作为一种有效的新冠肺炎治疗方法的潜力仍然存在争议 [41] [42]。所有已发表的临床试验都涉及口服该药物,尽管该疾病主要是呼吸系统疾病。直接吸入给药可以减少与口服相关的副作用,并确保药物在肺部的高浓度。目前,Albariqi A. H.等人已成功制备出HCQ-舒乐可吸入结晶粉末,可作为潜在的吸入新冠肺炎疗法用于临床试验 [43]。在未来,吸入性的HCQ若顺利通过临床试验,可能作为一种潜在的治疗选择,以较少的频率和相对较低的剂量将HCQ直接输送到肺部治疗新冠肺炎肺部疾病。

3. 新冠肺炎传播与雾化吸入

越来越多的证据证明,SARS-CoV-2的大部分传播是通过呼吸道途径,病毒潜伏在飞沫中,或者是气溶胶中 [8]。一些超级传播事件提示着呼吸道途径在SARS-CoV-2传播疫情方面起着重要作用 [8]。特别是,这些事件主要影响那些在通风不良的室内环境中长时间保持密切接触的人。到目前为止,空气采样在一些研究中发现了病毒RNA,但在另一些研究中没有 [44]。显然,当易感人群吸入了在环境中仍能存活的携带病毒的细小呼吸道飞沫时,就会发生空气传播 [45]。该病毒可以通过吸入感染者排出的细小飞沫直接传播,也可以通过在感染者身上产生气溶胶的过程传播。因此,受感染患者产生的生物气溶胶是SARS CoV-2和其他感染源的主要潜在传播源 [46]。意识到病毒通过空气传播的风险使患者在使用吸入性药物时犹豫不决,因为它们被认为是病毒传播和免疫抑制的潜在来源 [47]。尽管新冠肺炎上有很多讨论,但对于在家中治疗的肺部疾病患者却鲜有人关注 [47]。无论如何,许多医生和患者认为,避免对在家中治疗的新冠肺炎和肺部疾病患者进行不必要的雾化治疗是很重要的 [9]。然而,在2020年的全球哮喘倡议(GINA)战略中,建议也在新冠肺炎大流行期间,所有哮喘患者按照医生的处方继续使用包括吸入性皮质类固醇在内的所有吸入性药物 [48]。控制良好的患者出现哮喘似乎不会增加感染SARS-CoV-2的风险,也不会增加新冠肺炎引起的并发症 [49]。此外,目前没有任何确凿证据支持冠状病毒感染可能导致哮喘加重的可能性 [50]。

总之,为了降低传染他人的风险,患者在使用雾化吸入药物时,应遵循社交距离指导,避免在他人在场的情况下使用。此外,还应实施严格的雾化器卫生等预防措施,雾化应在打开的窗户附近或空气流通增加的区域进行。在适用的情况下,可以考虑使用长效药物进行雾化治疗,这样可以减少给药频率,进一步减少暴露。充分利用好雾化吸入药物的优势,同时避免新冠肺炎传播。

4. 结语

新冠肺炎大流行的出现正对患者身体与医疗基础设施施加着巨大压力,患者迫切需要有效的药物来减缓疾病。疫苗和靶向药物的研究仍在继续,许多医学研究也正在积极探索其感染的病理生理学,寻找合理的干预点。夸张的免疫反应和不受控制的炎症可能是严重疾病的根源 [51]。雾化吸入用药在类似的呼吸系统疾病模型中显示出不错的前景,早期报道的概念证明迫切需要治疗新冠肺炎的随机对照试验。如果雾化吸入用药能在为新冠肺炎寻找其适应症时证明它的功效,那么在不久的将来雾化吸入用药定会在全世界抗击新冠肺炎疫情的斗争中发挥重要作用。

NOTES

*通讯作者。

参考文献

[1] Domenico, C. and Maurizio, V. (2020) WHO Declares COVID-19 a Pandemic. Acta Biomedica Atenei Parmensis, 91, 157-160.
[2] Zhe, X., et al. (2020) Pathological Findings of COVID-19 Associated with Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 8, 420-422.
https://doi.org/10.1016/S2213-2600(20)30076-X
[3] Wichmann, D., et al. (2020) Autopsy Findings and Venous Thromboembolism in Patients with COVID-19. Annals of Internal Medicine, 173, 1030.
https://doi.org/10.7326/L20-1206
[4] Wu, Z.Y. and McGoogan, J.M. (2020) Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA, 323, 1239-1242.
https://doi.org/10.1001/jama.2020.2648
[5] Huang, C.L., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
[6] Zhou, P., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[7] 杜光, 赵杰, 卜书红, 陈娜, 陈瑞玲, 陈万生, 陈孝, 陈泳伍, 戴智勇, 杜光, 冯瑾, 高杰, 高申, 葛卫红, 郭瑞臣, 菅凌燕, 姜玲, 李峰, 李佳, 李玉萍, 刘皋林, 卢晓阳, 吕迁州, 闵光宁, 缪丽燕, 沈承武, 隋忠国, 童荣生, 王春革, 王卓, 武新安, 徐珽, 叶晓芬, 尹桃, 游一中, 张健, 张玮, 张文婷, 张晓坚, 赵杰, 赵志刚, 朱立勤, 邹东娜. 雾化吸入疗法合理用药专家共识(2019年版) [J]. 医药导报, 2019, 38(2): 135-146.
[8] Meyerowitz, E.A., Richterman, A., Gandhi, R.T. and Sax, P.E. (2020) Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Annals of Internal Medicine, 174, 69-79.
https://doi.org/10.7326/M20-5008
[9] Ari, A. (2020) Practical Strategies for a Safe and Effective Delivery of Aerosolized Medications to Patients with COVID-19. Respiratory Medicine, 167, Article ID: 105987.
https://doi.org/10.1016/j.rmed.2020.105987
[10] Ignarro, L.J. (2000) Nitric Oxide: Biology and Pathobiology. Academic Press, Cambridge.
[11] Lu, R.J., et al. (2020) Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. The Lancet, 395, 565-574.
https://doi.org/10.1016/S0140-6736(20)30251-8
[12] Daniel, W., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science (New York, N.Y.), 367, 1260-1263.
https://doi.org/10.1126/science.abb2507
[13] Schmidt, E.P., et al. (2012) The Pulmonary Endothelial Glycocalyx Regulates Neutrophil Adhesion and Lung Injury during Experimental Sepsis. Nature Medicine, 18, 1217-1223.
https://doi.org/10.1038/nm.2843
[14] Uchimido, R., Schmidt, E.P. and Shapiro, N.I. (2019) The Glycocalyx: A Novel Diagnostic and Therapeutic Target in Sepsis. Critical Care (London, England), 23, 16.
https://doi.org/10.1186/s13054-018-2292-6
[15] Cabrales, P., Tsai, A.G., Frangos, J.A. and Intaglietta, M. (2005) Role of Endothelial Nitric Oxide in Microvascular Oxygen Delivery and Consumption. Free Radical Biology and Medicine, 39, 1229-1237.
https://doi.org/10.1016/j.freeradbiomed.2005.06.019
[16] Sara, A., et al. (2005) Nitric Oxide Inhibits the Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 79, 1966-1969.
https://doi.org/10.1128/JVI.79.3.1966-1969.2005
[17] Zhang, R.L., et al. (2015) Hemoglobin βCys93 Is Essential for Cardiovascular Function and Integrated Response to Hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 112, 6425-6430.
https://doi.org/10.1073/pnas.1502285112
[18] Cabrales, P. (2013) Examining and Mitigating Acellular Hemoglobin Vasoactivity. Antioxidants & Redox Signaling, 18, 2329-2341.
https://doi.org/10.1089/ars.2012.4922
[19] Moncada, S. and Higgs, A. (1993) The L-Arginine-Nitric Oxide Pathway. The New England Journal of Medicine, 329, 2002-2012.
https://doi.org/10.1056/NEJM199312303292706
[20] Lee, H.-Y., Zeeshan, H.M.A., Kim, H.-R. and Chae, H.-J. (2017) Nox4 Regulates the eNOS Uncoupling Process in Aging Endothelial Cells. Free Radical Biology and Medicine, 113, 26-35.
https://doi.org/10.1016/j.freeradbiomed.2017.09.010
[21] Csoma, B., et al. (2019) Dysregulation of the Endothelial Nitric Oxide Pathway Is Associated with Airway Inflammation in COPD. Respiratory Research, 20, Article No. 156.
https://doi.org/10.1186/s12931-019-1133-8
[22] Lopez-Sublet, M., et al. (2018) Focus on Increased Serum Angiotensin-Converting Enzyme Level: From Granulomatous Diseases to Genetic Mutations. Clinical Biochemistry, 59, 1-8.
https://doi.org/10.1016/j.clinbiochem.2018.06.010
[23] Wang, J., et al. (2015) Balance between Angiotensin Converting Enzyme and Angiotensin Converting Enzyme 2 in Patients with Chronic Heart Failure. Journal of the Renin-Angiotensin-Aldosterone System, 16, 553-558.
https://doi.org/10.1177/1470320315576257
[24] Bateman, E.D., et al. (2018) Global Strategy for Asthma Management and Prevention: GINA Executive Summary. E.D. Bateman, S.S. Hurd, P.J. Barnes, J. Bousquet, J.M. Drazen, J.M. FitzGerald, P. Gibson, K. Ohta, P. O’Byrne, S.E. Pedersen, E. Pizzichini, S.D. Sullivan, S.E. Wenzel and H.J. Zar. Eur Respir J 2008; 31: 143-178. The European Respiratory Journal, 51, Article ID: 0751387.
https://doi.org/10.1183/13993003.51387-2007
[25] Rahman, M.M. and Siddiqui, M.M.R. (2016) Global Initiative for Chronic Obstructive Lung Disease (GOLD). Anwer Khan Modern Medical College Journal, 7, 4.
https://doi.org/10.3329/akmmcj.v7i1.31596
[26] Yang, M.J., et al. (2019) Inhaled Corticosteroids and Risk of Upper Respiratory Tract Infection in Patients with Asthma: A Meta-Analysis. Infection, 47, 377-385.
https://doi.org/10.1007/s15010-018-1229-y
[27] Yang, M.J., et al. (2017) Long-Term Use of Inhaled Corticosteroids and Risk of Upper Respiratory Tract Infection in Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Inhalation Toxicology, 29, 219-226.
https://doi.org/10.1080/08958378.2017.1346006
[28] Yang, I.A., et al. (2012) Inhaled Corticosteroids for Stable Chronic Obstructive Pulmonary Disease. The Cochrane Database of Systematic Reviews, No. 7, CD002991.
https://doi.org/10.1002/14651858.CD002991.pub3
[29] Marco, C., et al. (2017) Long-Term Effects of Inhaled Corticosteroids on Sputum Bacterial and Viral Loads in COPD. The European Respiratory Journal, 50, Article ID: 1700451.
https://doi.org/10.1183/13993003.00451-2017
[30] Antonio, A., et al. (2017) Inhalation Therapies in Acute Respiratory Distress Syndrome. Annals of Translational Medicine, 5, 293.
https://doi.org/10.21037/atm.2017.07.21
[31] Ortiz-Diaz, E., et al. (2011) Preadmission Use of Inhaled Corticosteroids Is Associated with a Reduced Risk of Direct Acute Lung Injury/Acute Respiratory Distress Syndrome. Chest, 140, 912A, 912B.
https://doi.org/10.1378/chest.1110134
[32] Emir, F., et al. (2017) Randomized Clinical Trial of a Combination of an Inhaled Corticosteroid and Beta Agonist in Patients at Risk of Developing the Acute Respiratory Distress Syndrome. Critical Care Medicine, 45, 798-805.
https://doi.org/10.1097/CCM.0000000000002284
[33] Yamaya, M., et al. (2020) Inhibitory Effects of Glycopyrronium, Formoterol, and Budesonide on Coronavirus HCoV-229E Replication and Cytokine Production by Primary Cultures of Human Nasal and Tracheal Epithelial Cells. Respiratory Investigation, 58, 155-168.
https://doi.org/10.1016/j.resinv.2019.12.005
[34] Oliver, B.G.G., Robinson, P., Peters, M. and Black, J. (2014) Viral Infections and Asthma: An Inflammatory Interface? The European Respiratory Journal, 44, 1666-1681.
https://doi.org/10.1183/09031936.00047714
[35] Singanayagam, R., et al. (2018) Corticosteroid Suppression of Antiviral Immunity Increases Bacterial Loads and Mucus Production in COPD Exacerbations. Nature Communications, 9, Article No. 2229.
https://doi.org/10.1038/s41467-018-04574-1
[36] Halpin, D.M.G., Singh, D. and Hadfield, R.M. (2020) Inhaled Corticosteroids and COVID-19: A Systematic Review and Clinical Perspective. The European Respiratory Journal, 55, Article ID: 2001009.
https://doi.org/10.1183/13993003.01009-2020
[37] Horby, P., et al. (2020) Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. The New England Journal of Medicine, 384, 693-704.
https://doi.org/10.1056/NEJMoa2021436
[38] Marmor, M.F., et al. (2016) Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology, 123, 1386-1394.
https://doi.org/10.1016/j.ophtha.2016.01.058
[39] Gautret, P., et al. (2020) Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial. International Journal of Antimicrobial Agents, 56, Article ID: 105949.
https://doi.org/10.1016/j.ijantimicag.2020.105949
[40] Biot, C., et al. (2006) Design and Synthesis of Hydroxyferroquine Derivatives with Antimalarial and Antiviral Activities. Journal of Medicinal Chemistry, 49, 2845-2849.
https://doi.org/10.1021/jm0601856
[41] Colson, P., et al. (2020) Chloroquine and Hydroxychloroquine as Available Weapons to Fight COVID-19. International Journal of Antimicrobial Agents, 55, Article ID: 105932.
https://doi.org/10.1016/j.ijantimicag.2020.105932
[42] Yao, X.T., et al. (2020) In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71, 732-739.
https://doi.org/10.1093/cid/ciaa237
[43] Albariqi, A.H., et al. (2020) Inhalable Hydroxychloroquine Powders for Potential Treatment of COVID-19. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 34, 20-31.
https://doi.org/10.1089/jamp.2020.1648
[44] Chu, D.K., et al. (2020) Physical Distancing, Face Masks, and Eye Protection to Prevent Person-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis. The Lancet, 395, 1973-1987.
https://doi.org/10.1016/S0140-6736(20)31142-9
[45] Dhand, R. and Li, J. (2020) Coughs and Sneezes: Their Role in Transmission of Respiratory Viral Infections, Including SARS-CoV-2. American Journal of Respiratory and Critical Care Medicine, 202, 651-659.
https://doi.org/10.1164/rccm.202004-1263PP
[46] Fink, J.B., et al. (2020) Reducing Aerosol-Related Risk of Transmission in the Era of COVID-19: An Interim Guidance Endorsed by the International Society of Aerosols in Medicine. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 33, 300-304.
https://doi.org/10.1089/jamp.2020.1615
[47] Ari, A. (2020) Use of Aerosolised Medications at Home for COVID-19. The Lancet Respiratory Medicine, 8, 754-756.
https://doi.org/10.1016/S2213-2600(20)30270-8
[48] Louis-Philippe, B., et al. (2019) The Global Initiative for Asthma (GINA): 25 Years Later. The European Respiratory Journal, 54, Article ID: 1900598.
https://doi.org/10.1183/13993003.00598-2019
[49] Halpin, D.M.G., Faner, R., Sibila, O., Badia, J.R. and Agusti, A. (2020) Do Chronic Respiratory Diseases or Their Treatment Affect the Risk of SARS-CoV-2 Infection? The Lancet Respiratory Medicine, 8, 436-438.
https://doi.org/10.1016/S2213-2600(20)30167-3
[50] Tran, K., et al. (2013) Aerosol-Generating Procedures and Risk of Transmission of Acute Respiratory Infections: A Systematic Review. CADTH Technology Overviews, 3, e3201.
[51] Adusumilli, N.C., et al. (2020) Harnessing Nitric Oxide for Preventing, Limiting and Treating the Severe Pulmonary Consequences of COVID-19. Nitric Oxide, 103, 4-8.
https://doi.org/10.1016/j.niox.2020.07.003