不含相邻短圈的平面图的点荫度问题
Vertex Arboricity Problem of Planar Graphs without Adjacent Short Cycles
DOI: 10.12677/PM.2021.118176, PDF, HTML, 下载: 279  浏览: 430  科研立项经费支持
作者: 刘 星*, 王慧娟#:青岛大学数学与统计学院,山东 青岛
关键词: 平面图点荫度相邻Planar Graph Vertex Arboricity Adjacent Cycle
摘要: 在社团网络的研究中,社团结构划分一直是一个有价值的研究课题。 出于安全考虑,对一个新的社团结构划分问题进行研究,它可以在图论中转化为最小化问题。 图G的点荫度是对G的点集进行顶点着色,使得每个颜色类的导出子图是G 的森林的最小颜色数,一般用符号va(G)表示。 一般地,对于任意平面图 G ,va(G) ≤ 3,且对任意非空图 G,va(G) ≥ 1 成立。 显然,va(G) = 1当且仅当图G 是一个无圈图。 对于某些特殊情况,如果图G是一个不含3-圈的平面图,va(G) ≤ 2。Raspaud 和Wang 等人证明了如果图G是一个不含4-圈或不含5-圈的平面图,则va(G) ≤ 2。 此外,Huang, Shui 和Wang 等人证明了如果图G是一个不含7-圈的平面图,则va(G) ≤ 2。 在本文中,我们证明了如果图G是一个不含相邻的3-圈和4-圈的平面图,或者不含相邻的4-圈和5-圈的平 面图,则va(G) ≤ 2。
Abstract: In the research of social networks, social structure decomposition has always been a valuable research topic. For security reasons, we study a new social structure decomposition problem, which can be decomposed into a problem of minimization in graph theory. The vertex arboricity of a graph G, denoted by va(G), is the minimum number of subsets such that the vertices of G can be colored and every color class induces an acyclic graph such as a forest of G. Normally, va(G) ≤ 3 for every planar graph G and va(G) ≥ 1 for every nonempty graph G. There is no doubt that va(G) = 1 if and only if G is an acyclic graph. For some special cases, it is known that va(G) ≤ 2 if G is a planar graph without 3-cycles. Recently, Raspaud and Wang et al.  proved that va(G) ≤ 2 if G is a planar graph without 4-cycles or without 5-cycles. In addition, Huang, Shiu, and Wang showed that if G is a planar graph without 7-cycles, then va(G) ≤ 2. In this paper, we prove that if G is a planar graph without adjacent 3-cycles and 5-cycles, or without adjacent 4-cycles and 5-cycles, then va(G) ≤ 2.
文章引用:刘星, 王慧娟. 不含相邻短圈的平面图的点荫度问题[J]. 理论数学, 2021, 11(8): 1585-1600. https://doi.org/10.12677/PM.2021.118176

参考文献

[1] Yang, J, McAuley, J. and Leskovec, J. (2013) Community Detection in Networks with Node Attributes. 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, 7-10 December 2013, 1151-1156.
https://doi.org/10.1109/ICDM.2013.167
[2] Bi, Y.J., Wu, W.L., Zhu, Y.Q., Fan, L.D. and Wang, A.L. (2014) A Nature-Inspired Influence Propagation Model for the Community Expansion Problem. Journal of Combinatorial Optimization, 28, 513-528.
https://doi.org/10.1007/s10878-013-9686-9
[3] Lancichinetti, A. and Fortunato, S. (2009) Community Detection Algorithms: A Comparative Analysis. Physical Review E, 80, Article ID: 056117.
https://doi.org/10.1103/PhysRevE.80.056117
[4] Wagenseller, P., Wang, F. and Wu, W.L. (2018) Size Matters: A Comparative Analysis of Community Detection Algorithms. IEEE Transactions on Computational Social Systems, 5, 951-960.
https://doi.org/10.1109/TCSS.2018.2875626
[5] Chen, G. and Wang, Y. (2011) Community Detection in Complex Networks Using Extremal Optimization Modularity Density. Journal of Huazhong University of Science and Technology (Natural Science Edition), 39, 82-85.
[6] Tong, G.M., Cui, L., Wu, W.L., Liu, C. and Du, D.Z. (2016) Terminal-Set-Enhanced Community Detection in Social Networks. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, 10-14 April 2016, 1-9.
https://doi.org/10.1109/INFOCOM.2016.7524473
[7] Lu, Z.X., Wu, W.L., Chen, W.D., Zhong, J.F., Bi, Y.J. and Gao, Z. (2013) The Maximum Community Partition Problem in Networks. Discrete Mathematics, Algorithms and Applications, 5, Article ID: 1350031.
https://doi.org/10.1142/S1793830913500316
[8] Chartrand, G., Kronk, H.V. and Wall, C.E. (1968) The Point-Arboricity of a Graph. Israel Journal of Mathematics, 6, 169-175.
https://doi.org/10.1007/BF02760181
[9] Chartrand, G. and Kronk, H.V. (1969) The Point-Arboricity of Planar Graphs. Journal of the London Mathematical Society, 44, 612-616.
https://doi.org/10.1112/jlms/s1-44.1.612
[10] Fortunato, S. and Hric, D. (2016) Community Detection in Networks: A User Guide. Physics Reports, 659, 1-44.
https://doi.org/10.1016/j.physrep.2016.09.002
[11] Wang, L., Wang, J., Bi, Y.J., Wu, W.L., Xu, W. and Lian, B. (2014) Noise-Tolerance Com- munity Detection and Evolution in Dynamic Social Networks. Journal of Combinatorial Optimization, 28, 600-612.
https://doi.org/10.1007/s10878-014-9719-z
[12] Raspaud, A. and Wang, W. (2008) On the Vertex-Arboricity of Planar Graphs. European Journal of Combinatorics, 29, 1064-1075.
https://doi.org/10.1016/j.ejc.2007.11.022
[13] Wang, W. and Lin, K.W. (2002) Choosability and Edge Choosability of Planar Graphs without Five Cycles. Applied Mathematics Letters, 15, 561-565.
https://doi.org/10.1016/S0893-9659(02)80007-6
[14] Fijav˘z, G., Juvan, M., Mohar, B. and S˘krekovski, R. (2002) Planar Graphs without Cycles of Specific Lengths. European Journal of Combinatorics, 23, 377-388.
https://doi.org/10.1006/eujc.2002.0570
[15] Huang, D., Shui, W.C. and Wang, W. (2012) On the Vertex-Arboricity of Planar Graphs without 7-Cycles. Discrete Mathematics, 312, 2304-2315.
https://doi.org/10.1016/j.disc.2012.03.035
[16] Chen, M., Raspaud, A. and Wang, W. (2012) Vertex-Arboricity of Planar Graphs without Intersecting Triangles. European Journal of Combinatorics, 33, 905-923.
https://doi.org/10.1016/j.ejc.2011.09.017
[17] Huang, D. and Wang, W.F. (2013) Vertex-Arboricity of Planar Graphs without Chordal 6- Cycles. International Journal of Computer Mathematics, 90, 258-272.
https://doi.org/10.1080/00207160.2012.727989
[18] Cai, H., Wu, J. and Sun, L. (2018) Vertex Arboricity of Planar Graphs without Intersecting 5-Cycles. Journal of Combinatorial Optimization, 35, 365-372.
https://doi.org/10.1007/s10878-017-0168-3
[19] Chen, H.L., Teng, W.S., Wang, H.J. and Gao, H.W. (2018) Vertex Arboricity of Planar Graphs without 5-Cycles Intersecting with 6-Cycles. Scholars Journal of Physics, Mathematics and Statistics, 5, 322-327.
[20] Teng, W.S., Wang, H.J., Chen, H.L. and Liu, B. (2019) Social Structure Decomposition with Security Issue. IEEE Access, 7, 82785-82793.
https://doi.org/10.1109/ACCESS.2019.2924052
[21] Choi, I. and Zhang, H. (2014) Vertex Arboricity of Toroidal Graphs with a Forbidden Cycle. Discrete Mathematics, 333, 101-105.
https://doi.org/10.1016/j.disc.2014.06.011
[22] Tao, F.Y. and Lin, W.S. (2016) On the Equitable Vertex Arboricity of Graphs. International Journal of Computer Mathematics, 93, 844-853.
https://doi.org/10.1080/00207160.2015.1023794
[23] Yang, A.F. and Yuan, J. (2007) On the Vertex Arboricity of Planar Graphs of Diameter Two. Discrete Mathematics, 307, 2438-2447.
https://doi.org/10.1016/j.disc.2006.10.017
[24] Guo, Z., Zhao, H. and Mao, Y. (2015) On the Equitable Vertex Arboricity of Complete Tripartite Graphs. Discrete Mathematics Algorithms and Applications, 7, 225-243.
https://doi.org/10.1142/S1793830915500561
[25] Cui, X.Y., Teng, W.S., Liu, X. and Wang, H.J. (2020) A Note of Vertex Arboricity of Planar Graphs without 4-Cycles Intersecting with 6-Cycles. Theoretical Computer Science, 836, 53-58.
https://doi.org/10.1016/j.tcs.2020.06.009