幽门螺旋杆菌感染与非酒精性脂肪肝关系的研究进展
The Mechanism of Nonalcoholic Fatty Liver Disease Induced by Helicobacter pylori Infection
摘要: 幽门螺旋杆菌是一种长期定居于消化道的微需氧菌,是人类微生物群的关键组成部分,与胃肠道疾病的发生密切相关。有研究证实,幽门螺旋杆菌可以在非酒精性脂肪肝患者肝内定格。此外,还有研究表示幽门螺旋杆菌感染与非酒精性脂肪肝的发生与发展呈正相关,是非酒精性脂肪肝多重发病机制的一部分。但具体作用机制尚存在争议。通过研究两者之间的关系,可以为临床防治非酒精性脂肪肝提供新思路。本文就幽门螺旋杆菌在非酒精性脂肪肝发生和发展方面的研究进展进行综述。
Abstract: Helicobacter pylori is a kind of long-term settled in the digestive tract of aerobe, is the key component of the human microbiota, linked closely with the incidence of gastrointestinal diseases. Some studies have confirmed that H. pylori can be fixed in the liver of patients with non-alcoholic fatty liver disease. In addition, studies have shown that Helicobacter pylori infection is positively correlated with the occurrence and development of nonalcoholic fatty liver disease, which is a part of the multiple pathogenesis of nonalcoholic fatty liver disease. However, the specific mechanism is still controversial. By studying the relationship between the two, can provide new ideas for clinical prevention and treatment of nonalcoholic fatty liver disease. In this paper, the H. pylori in the occurrence and development of nonalcoholic fatty liver disease research progress were summarized.
文章引用:李婷婷, 马鹏. 幽门螺旋杆菌感染与非酒精性脂肪肝关系的研究进展[J]. 临床医学进展, 2021, 11(9): 3865-3869. https://doi.org/10.12677/ACM.2021.119566

1. 引言

非酒精性脂肪肝(Nonalcoholic fatty liver disease, NAFLD)是一种与脂肪在肝脏弥漫性浸润相关的临床常见病。国内外流行病学研究表明,成年人中约有20%~33%人患有NAFLD [1],所以研究其发病机制对预防和治疗NAFLD至关重要。研究证实,NAFLD被认为是一种“多重打击”的疾病,例如代谢综合征、脂质过氧化、胰岛素抵抗及炎症反应等均被证实为NAFLD的发病机制。幽门螺旋杆菌(Helicobacter pylori, Hp)是一种革兰氏阴性螺旋状杆菌,通过鞭毛的作用黏附于胃黏膜上,其可分泌细胞毒素、尿素酶等物质来改变胃肠道的生理环境,从而诱发一系列胃肠道症状。据统计,全球感染Hp的人超过50%,特别是在发展中国家。除此之外,有研究发现Hp不仅可以引起消化道疾病,还可以通过产生胰岛素抵抗、影响脂质代谢、增加肠道通透性、改变肠道菌群分布及影响激素分泌等机制来促进NAFLD的发生与发展。目前Hp与NAFLD的关系成为了国内外临床研究的焦点,但Hp阳性的患者是否会促进NAFLD的发生及发展仍存在争议。通过对Hp感染与NAFLD的联系及其致病机制的深入研究,为临床中防治NAFLD提供新的方案。现主要就Hp感染在NAFLD发生与发展方面的研究进展予以综述。

2. 幽门螺旋杆菌导致非酒精性脂肪肝的发病机制研究

2.1. 幽门螺旋杆菌感染产生胰岛素抵抗,促进非酒精性脂肪肝发生、发展

胰岛素抵抗(Insulin resistance, IR)是指胰岛素依赖性细胞不能对体内正常循环水平的胰岛素作出正确反应,使其无法吸收和利用体内葡萄糖,需要高于正常水平的胰岛素浓度来控制血糖。陈立伟等人 [2] 在对幽门螺杆菌感染与肥胖相关性研究中发现Hp感染与胰岛素抵抗显著相关。人体感染Hp后可通过释放炎症细胞因子(白细胞介素、肿瘤坏死因子等)产生全身性效应,导致机体肝细胞损伤和胰岛素抵抗可能性增加,参与NAFLD的发生、发展,其中肿瘤坏死因子(Tumor necrosis factor-α, TNF-α)本身就是一种细胞信号蛋白,通过干扰胰岛素信号转导,导致胰岛素对葡萄糖的吸收减少,诱导胰岛素抵抗 [3]。另外,有研究认为Hp可以介导胎球蛋白A增加胰岛素抵抗的发生,进而促进NAFLD发生及发展。胎球蛋白A,是一种由肝脏产生的糖蛋白,具有抗炎、降低糖耐量以及抑制肝脏中的胰岛素受体酪氨酸激酶等作用 [4]。Kebapcilar L等 [5] 在研究根除幽门螺杆菌对巨噬细胞移动抑制因子、C反应蛋白和胎球蛋白-a水平的影响中证实机体感染Hp后,会导致体内的胎球蛋白A水平降低,产生胰岛素抵抗。此外,Hp还可以通过促进血小板活化和血小板–白细胞聚集;产生活性氧参与IR综合征的病理生理学;影响凋亡过程等 [6] 机制来影响胰岛素抵抗,但上述作用机制尚未明确,有待大量临床研究证实。因此,Hp感染影响胰岛素抵抗,是促进NAFLD发生、发展的部分途径。

2.2. 幽门螺旋杆菌感染影响脂质代谢,促进非酒精性脂肪肝发生、发展

HirokiSatoh等 [7] 研究显示脂代谢异常是Hp感染与NAFLD的中介因素,以及Hp感染与血脂谱改变显著相关(P < 0.05),并与低高密度脂蛋白胆固醇血症和高低密度脂蛋白胆固醇血症独立相关。刘婷婷等 [8] 在幽门螺旋杆菌与肝病的研究进展提到Hp可与低密度脂蛋白胆固醇(Low-density lipoprotein cholesterol, LDL-C)相结合,产生氧化型低密度脂蛋白(Human oxidized low density lipoprotein, OX-LDL),其可以吸引胆固醇积聚于肝细胞,促进NAFLD发生、发展。Musso G等 [9] 在非酒精性脂肪肝肝脏脂质代谢的研究进展中提到机体感染Hp后可产生炎症介质,从而抑制肝脂肪酶(Hepatic lipase, HL)的活性,刺激肝细胞分泌极低密度脂蛋白(Very lowdensity lipoproteins, VLDL),引起高脂血症,促进NAFLD发生。炎症因子TNF-α除了可以诱导胰岛素抵抗,在脂质代谢中也发挥一定的作用,其可能机制为:长期感染Hp的患者体内TNF-α水平上升,其可以抑制脂蛋白酶活性,导致血浆胆固醇水平升高及脂质代谢紊乱 [10]。Ibrahim SH等 [11] 还发现TNF-α还可以促进脂肪分解,导致游离脂肪酸(Free fat acid, FFA)增加,使机体内质网应激能力和氧化应激能力增加,导致肝细胞损伤。有研究证实,Hp所诱导的胰岛素抵抗除了可以直接促进NAFLD的发生、发展,还可以通过促进脂肪组织分解产生FFA,使更多的脂肪沉积于肝脏,造成血脂代谢紊乱,间接影响NAFLD发生、发展。然而,脂质代谢在Hp感染与NAFLD之间的影响尚存在争议,仍需要进一步研究。

2.3. 幽门螺旋杆菌感染影响肠道菌群分布及肠道通透性,促进非酒精性脂肪肝发生、发展

Hp感染影响肠道微生物群在NAFLD发展的“多重打击”中起着重要的作用 [12],主要包括以下两方面:1) 肠道菌群的改变:据报道,细胞毒素相关基因A抗原(cytotoxin associated gene A, CagA)是Hp的已知毒力因子,可以改变肠道微生物群,导致细胞增殖和免疫表型的恶化 [13]。Hp感染可显著增加肠道中拟杆菌的水平 [14] [15],拟杆菌是一种无芽孢、专性厌氧的革兰氏染色阴性杆菌,它可以产生人体所需的短链脂肪酸(Shortchain fatty acids, SCFAs)。但随着Hp的长期感染,拟杆菌数量不断增加,SCFAs的产生超过机体所需,使肝脏脂肪生成增加,促进NAFLD发生、发展 [16]。2) 肠道通透性的增加:Miele等人的一项研究 [17] 指出NAFLD与肠道通透性增加有关,可能是破坏肠道细胞间紧密连接的所致。此外,有研究证实:机体感染Hp可增加肠道通透性,促进细菌内毒素、代谢副产物(包括乙醇、丙酮和丁酸)和细菌脂多糖通过门静脉进入肝脏,参与NAFLD的发展和进展 [18] [19]。

2.4. 幽门螺旋杆菌感染影响激素分泌,促进非酒精性脂肪肝发生、发展

Hp感染与NAFLD之间的激素联系也被认为是促进NAFLD发生及发展的重要影响因素之一,其中以脂联素和瘦素的作用最为重要 [20]。脂联素,是一种衍生于脂肪细胞的激素,它可以拮抗肝脏中过多的脂质储存,还具有抑制巨噬细胞功能、抑制核因子κB (nuclear factor kappa-B, NF-κB)活化等特性 [21]。当脂联素表达异常时,脂肪更容易在肝细胞中积聚,肝脏更容易受到炎症损伤,促进NAFLD发生。多项研究表明,NAFLD患者感染Hp后体内的脂联素水平显著降低 [22] [23]。因此,Hp感染可以通过降低体内脂联素的浓度来增加NAFLD发生与发展。瘦素,一种由脂肪组织分泌的多效生物活性分子,它在能量稳态、葡萄糖和脂质代谢的调节中起着关键作用,Cheng DD等人 [24] 提到瘦素可能使IRS丝氨酸磷酸化,干扰胰岛素信号转导而引起NAFLD,但上述机制的证据尚不充分,需要更多的临床研究来明确血清中瘦素水平在Hp与NAFLD中的作用。

3. 非酒精性脂肪肝伴幽门螺旋杆菌感染的治疗方案

目前,临床中 NAFLD的治疗方案主要是多烯磷脂酰胆碱联合二甲双胍,其作用机制可能是:多烯磷脂酰胆碱可以对已受损的肝细胞膜起修复、保护作用,也可促进其再生;二甲双胍则通过改善机体的IR作用及减少肝糖原的分解来改善NAFLD的病理状态,但上述治疗方案对于治疗合并Hp感染的NAFLD患者治疗效果并不理想。何周桃等人 [25] 在NAFLD原有治疗方案基础上给予根除Hp治疗(一种质子泵抑制剂 + 两种抗生素 + 一种铋剂),结果显示:给予根除Hp治疗的NAFLD患者治疗总有效率高于未根除Hp治疗者,且血脂、血糖及肝功能等指标低于未根除Hp者。此外,马杈、刘畅等 [26] [27] 多项研究也得出了相同的结果。所以,合并Hp感染的NAFLD患者在原治疗(多烯磷脂酰胆碱联合二甲双胍)的基础上,给予抗Hp治疗(四联疗法)可以提高非酒精性脂肪肝伴幽门螺旋杆菌感染患者疗效。

4. 总结与展望

综上所述,目前临床中对Hp感染与NAFLD之间的关系仍存在争议。多项研究表明,Hp感染与NAFLD的风险呈正相关,Hp可以导致胰岛素抵抗,影响脂质代谢、肠道菌群分布、肠道通透性及激素分泌等多种机制来影响NAFLD,且根除Hp治疗可以为临床中监测、预防及治疗NAFLD提供有效的措施。但目前尚缺乏充足证据来证明两者之间的相关性。因此,需要进一步的前瞻性研究来加强两者关系,从而为临床中非酒精性脂肪肝的治疗策略中提供一个新的思路。

参考文献

[1] Bellentani, S., Scaglioni, F., Marino, M. and Bedogni, G. (2010). Epidemiology of Non-Alcoholic Fatty Liver Disease. Digestive Diseases (Basel, Switzerland), 28, 155-161.
https://doi.org/10.1159/000282080
[2] Chen, L.W., Kuo, S.F., Chen, C.H., Chien, C.H., Lin, C.L. and Chien, R.N. (2018). A Community-Based Study on the Association between Helicobacter pylori Infection and Obesity. Scientific Reports, 8, Article ID: 10746.
https://doi.org/10.1038/s41598-018-28792-1
[3] Li, M., Shen, Z. and Li, Y.M. (2013). Potential Role of Helicobacter pylori Infection in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 19, 7024-7031.
https://doi.org/10.3748/wjg.v19.i41.7024
[4] Waluga, M., Kukla, M., Żorniak, M., Bacik, A. and Kotulski, R. (2015). From the Stomach to Other Organs: Helicobacter pylori and the Liver. World Journal of Hepatology, 7, 2136-2146.
https://doi.org/10.4254/wjh.v7.i18.2136
[5] Kebapcilar, L., Bilgir, O., Cetinkaya, E., Akyol, M., Bilgir, F. and Bozkaya, G. (2010). The Effect of Helicobacter pylori Eradication on Macrophage Migration Inhibitory Factor, C-Reactive Protein and Fetuin-A Levels. Clinics (Sao Paulo, Brazil), 65, 799-802.
https://doi.org/10.1590/S1807-59322010000800010
[6] Polyzos, S.A. and Kountouras, J. (2015). Novel Advances in the Association between Helicobacter pylori Infection, Metabolic Syndrome, and Related Morbidity. Helicobacter, 20, 405-409.
https://doi.org/10.1111/hel.12228
[7] Satoh, H., Saijo, Y., Yoshioka, E. and Tsutsui, H. (2010). Helicobacter pylori Infection Is a Significant Risk for Modified Lipid Profile in Japanese Male Subjects. Journal of Atherosclerosis and Thrombosis, 17, 1041-1048.
https://doi.org/10.5551/jat.5157
[8] 刘婷婷, 张颖秋, 朱樑. 幽门螺旋杆菌与肝病的研究进展[J]. 第二军医大学学报, 2016(6): 744-749.
[9] Musso, G., Gambino, R. and Cassader, M. (2009). Recent Insights into Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Progress in Lipid Research, 48, 1-26.
https://doi.org/10.1016/j.plipres.2008.08.001
[10] Basso, D., Plebani, M. and Kusters, J.G. (2010). Pathogenesis of Helicobacter pylori Infection. Helicobacter, 15, 14-20.
https://doi.org/10.1111/j.1523-5378.2010.00781.x
[11] Ibrahim, S.H., Kohli, R. and Gores, G.J. (2011). Mechanisms of Lipotoxicity in NAFLD and Clinical Implications. Journal of Pediatric Gastroenterology and Nutrition, 53, 131-140.
https://doi.org/10.1097/MPG.0b013e31822578db
[12] Castaño-Rodríguez, N., Mitchell, H.M. and Kaakoush, N.O. (2017). NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 657-668.
https://doi.org/10.1016/j.bpg.2017.09.008
[13] Jones, T.A., Hernandez, D.Z., Wong, Z.C., Wandler, A.M. and Guillemin, K. (2017). The Bacterial Virulence Factor CagA Induces Microbial Dysbiosis That Contributes to Excessive Epithelial Cell Proliferation in the Drosophila Gut. PLoS Pathogens, 13, e1006631.
https://doi.org/10.1371/journal.ppat.1006631
[14] Schulz, C., Schütte, K., Koch, N., Vilchez-Vargas, R., Wos-Oxley, M.L., Oxley, A., Vital, M., Malfertheiner, P. and Pieper, D.H. (2018). The Active Bacterial Assemblages of the Upper GI Tract in Individuals with and without Helicobacter Infection. Gut, 67, 216-225.
https://doi.org/10.1136/gutjnl-2016-312904
[15] Porras, D., Nistal, E., Martínez-Flórez, S., Pisonero-Vaquero, S., Olcoz, J.L., Jover, R., González-Gallego, J., García- Mediavilla, M.V. and Sánchez-Campos, S. (2017). Protective Effect of Quercetin on High-Fat Diet-Induced Non-Alco- holic Fatty Liver Disease in Mice Is Mediated by Modulating Intestinal Microbiota Imbalance and Related Gut-Liver Axis Activation. Free Radical Biology & Medicine, 102, 188-202.
https://doi.org/10.1016/j.freeradbiomed.2016.11.037
[16] Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh, W.G., Yeh, M.M., Kowdley, K.V., O’Brien, K.D., Pennathur, S. and Chait, A. (2011). Dietary Cholesterol Exacerbates Hepatic Steatosis and Inflammation in Obese LDL Receptor-Deficient Mice. Journal of Lipid Research, 52, 1626-1635.
https://doi.org/10.1194/jlr.M016246
[17] Miele, L., Valenza, V., La Torre, G., Montalto, M., Cammarota, G., Ricci, R., Mascianà, R., Forgione, A., Gabrieli, M. L., Perotti, G., Vecchio, F.M., Rapaccini, G., Gasbarrini, G., Day, C.P. and Grieco, A. (2009). Increased Intestinal Permeability and Tight Junction Alterations in Nonalcoholic Fatty Liver Disease. Hepatology, 49, 1877-1887.
https://doi.org/10.1002/hep.22848
[18] Wieland, A., Frank, D.N., Harnke, B. and Bambha, K. (2015). Systematic Review: Microbial Dysbiosis and Nonalcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 42, 1051-1063.
https://doi.org/10.1111/apt.13376
[19] Fukuda, Y., Bamba, H., Okui, M., Tamura, K., Tanida, N., Satomi, M., Shimoyama, T. and Nishigami, T. (2001). Helicobacter pylori Infection Increases Mucosal Permeability of the Stomach and Intestine. Digestion, 63, 93-96.
https://doi.org/10.1159/000051918
[20] Zhou, B.G., Yang, H.J., Xu, W., Wang, K., Guo, P. and Ai, Y.W. (2019). Association between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Observational Studies. Helicobacter, 24, Article ID: e12576.
https://doi.org/10.1111/hel.12576
[21] Ouchi, N., Kihara, S., Arita, Y., Okamoto, Y., Maeda, K., Kuriyama, H., Hotta, K., Nishida, M., Takahashi, M., Muraguchi, M., Ohmoto, Y., Nakamura, T., Yamashita, S., Funahashi, T. and Matsuzawa, Y. (2000). Adiponectin, an Adipocyte-Derived Plasma Protein, Inhibits Endothelial NF-kappaB Signaling through a cAMP-Dependent Pathway. Circulation, 102, 1296-1301.
https://doi.org/10.1161/01.CIR.102.11.1296
[22] Pirouz, T., Zounubi, L., Keivani, H., Rakhshani, N. and Hormazdi, M. (2009). Detection of Helicobacter pylori in Paraffin-Embedded Specimens from Patients with Chronic Liver Diseases, Using the Amplification Method. Digestive Diseases and Sciences, 54, 1456-1459.
https://doi.org/10.1007/s10620-008-0522-5
[23] Polyzos, S.A., Kountouras, J., Papatheodorou, A., Patsiaoura, K., Katsiki, E., Zafeiriadou, E., Zavos, C., Anastasiadou, K. and Terpos, E. (2013). Helicobacter pylori Infection in Patients with Nonalcoholic Fatty Liver Disease. Metabolism: Clinical and Experimental, 62, 121-126.
https://doi.org/10.1016/j.metabol.2012.06.007
[24] Cheng, D.D., He, C., Ai, H.H., Huang, Y. and Lu, N.H. (2017). The Possible Role of Helicobacter pylori Infection in Non-Alcoholic Fatty Liver Disease. Frontiers in Microbiology, 8, 743.
https://doi.org/10.3389/fmicb.2017.00743
[25] 何周桃, 韩向阳, 陈益耀, 等. 根除幽门螺杆菌在伴幽门螺杆菌感染的非酒精性脂肪性肝病治疗中的应用[J]. 肝脏, 2017, 22(3): 244-247.
[26] 马杈. 根除幽门螺杆菌对非酒精性脂肪性肝病的影响[D]: [硕士学位论文]. 延安: 延安大学, 2017.
[27] 刘畅, 彭刚, 邹瑞政. 非酒精性脂肪性肝病与幽门螺杆菌关系及抗幽门螺杆菌治疗疗效研究[J]. 现代消化及介入诊疗, 2018, 23(5): 636-639.