|
[1]
|
Self, C.H. and Cook, D.B. (1996) Advances in Immunoassay Technology. Current Opinion in Biotechnology, 7, 60-65.
[Google Scholar] [CrossRef]
|
|
[2]
|
Tian, S., You, W., Shen, Y., et al. (2019) Facile Synthesis of Silver-Rich Au/Ag Bimetallic Nanoparticles with Highly Active SERS Properties. New Journal of Chemistry, 43, 14772-14780. [Google Scholar] [CrossRef]
|
|
[3]
|
Vasan, R.S. (2006) Biomarkers of Cardiovascular Disease. Circulation, 113, 2335-2362.
[Google Scholar] [CrossRef]
|
|
[4]
|
Shen, J., Li, Y., Gu, H., et al. (2014) Recent Development of Sandwich Assay Based on the Nanobiotechnologies for Proteins, Nucleic Acids, Small Molecules, and Ions. Chemical Reviews, 114, 7631-7677.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Miles, L.E.M. and Hales, C.N. (1968) The Preparation and Properties of Purified 125I-Labelled Antibodies to Insulin. Biochemical Journal, 108, 611-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Engvall, E. and Perlmann, P. (1971) Enzyme-Linked Immunosorbent Assay (ELISA) Quantitative Assay of Immunoglobulin G. Immunochemistry, 8, 871-874. [Google Scholar] [CrossRef]
|
|
[7]
|
Yang, Y., Zhu, J., Zhao, J., et al. (2019) Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Acs Applied Materials & Interfaces, 11, 3617-3626. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ma, Y., Liu, H., Chen, Y., et al. (2020) Quantitative and Recyclable Surface-Enhanced Raman Spectroscopy Immunoassay Based on Fe3O4@TiO2@Ag Core-Shell Nanoparticles and Au Nanowire/Polydimethylsiloxane Substrates. Acs Applied Nano Materials, 3, 4610-4622. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhao, J., Wu, C., Zhai, L., et al. (2019) A SERS-Based Immunoassay for the Detection of Alpha-Fetoprotein Using AuNS@Ag@SiO2 Core-Shell Nanostars. Journal of Materials Chemistry C, 7, 8432-8441.
[Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, Y., Sun, H., Gao, R., et al. (2018) Facile SERS-Active Chip (PS@Ag/SiO2/Ag) for the Determination of HCC Biomarker. Sensors and Actuators B—Chemical, 272, 34-42. [Google Scholar] [CrossRef]
|
|
[11]
|
He, W., Liu, Y., Yuan, J., et al. (2011) Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays. Biomaterials, 32, 1139-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhou, L., Zhou, J., Feng, Z., et al. (2016) Immunoassay for Tumor Markers in Human Serum Based on Si Nanoparticles and SiC@Ag SERS-Active Substrate. Analyst, 141, 2534-2541. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, S., Zhang, C., Jia, Y.Z., et al. (2019) Sandwich-Type Electrochemical Immunosensor Based on Au@Pt DNRs/NH2-MoSe2 NSs Nanocomposite as Signal Amplifiers for the Sensitive Detection of Alpha-Fetoprotein. Bioelectrochemistry, 128, 140-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, Y., Zhao, G., Wang, H., et al. (2018) Sandwich-Type Electrochemical Immunoassay Based on Co3O4@MnO2-Thionine and Pseudo-ELISA Method toward Sensitive Detection of Alpha Fetoprotein. Biosensors & Bioelectronics, 106, 179-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhu, D., Hu, Y., Zhang, X., et al. (2019) Colorimetric and Fluorometric Dual-Channel Detection of Alpha-Fetoprotein Based on the Use of ZnS-CdTe Hierarchical Porous Nanospheres. Microchimica Acta, 186, 124.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gu, B., Xu, C., Yang, C., et al. (2011) ZnO Quantum Dot Labeled Immunosensor for Carbohydrate Antigen 19-9. Biosensors and Bioelectronics, 26, 2720-2723. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mukundan, H., Xie, H., Anderson, A.S., et al. (2009) Optimizing a Waveguide-Based Sandwich Immunoassay for Tumor Biomarkers: Evaluating Fluorescent Labels and Functional Surfaces. Bioconjugate Chemistry, 20, 222-230.
[Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gu, X., Wang, K., Qiu, J., et al. (2021) Enhanced Electrochemical and SERS Signals by Self-Assembled Gold Microelectrode Arrays: A Dual Readout Platform for Multiplex Immumoassay of Tumor Biomarkers. Sensors and Actuators B: Chemical, 334, Article ID: 129674. [Google Scholar] [CrossRef]
|
|
[19]
|
Alves-Balvedi, R.P., Caetano, L.P., Madurro, J.M., et al. (2016) Use of 3,3’,5,5’ Tetramethylbenzidine as New Electrochemical Indicator of DNA Hybridization and Its Application in Genossensor. Biosensors & Bioelectronics, 85, 226-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gu, X., She, Z., Ma, T., et al. (2018) Electrochemical Detection of Carcinoembryonic Antigen. Biosensors & Bioelectronics, 102, 610-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, D., Huang, L., Liu, B., et al. (2019) A Vertical Flow Microarray Chip Based on SERS Nanotags for Rapid and Ultrasensitive Quantification of Alpha-Fetoprotein and Carcinoembryonic Antigen. Microchimica Acta, 186, 699.
[Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Akanda, M.R., Aziz, M.A., Jo, K., et al. (2011) Optimization of Phosphatase- and Redox Cycling-Based Immunosensors and Its Application to Ultrasensitive Detection of Troponin I. Analytical Chemistry, 83, 3926-3933.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, S., Zhang, F., Wang, Z., et al. (2018) A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosensors & Bioelectronics, 112, 186-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, C., Gao, Y., Yang, N., et al. (2018) Direct Determination of the Tumor Marker AFP via Silver Nanoparticle Enhanced SERS and AFP-Modified Gold Nanoparticles as Capturing Substrate. Microchimica Acta, 185, 90.
[Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
So, H.M., Won, K., Kim, Y.H., et al. (2005) Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. Journal of the American Chemical Society, 127, 11906-11907.
[Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Im, H., Bantz, K.C., Lee, S.H., et al. (2013) Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Advanced Materials, 25, 2678-2685. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, Z., Wang, J., Shanmugasundaram, K.B., et al. (2020) Tracking Drug-Induced Epithelial-Mesenchymal Transition in Breast Cancer by a Microfluidic Surface-Enhanced Raman Spectroscopy Immunoassay. Small, 16, Article ID: 1905614. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, X.X., Xu, D., Guo, D., et al. (2020) Enzyme-Free Amplified SERS Immunoassay for the Ultrasensitive Detection of Disease Biomarkers. Chemical Communications, 56, 2933-2936. [Google Scholar] [CrossRef]
|
|
[29]
|
Xiao, R., Lu, L., Rong, Z., et al. (2020) Portable and Multiplexed Lateral Flow Immunoassay Reader Based on SERS for Highly Sensitive Point-of-Care Testing. Biosensors & Bioelectronics, 168, Article ID: 112524.
[Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, R., Jin, Z., Tian, Z., et al. (2021) A Straightforward and Sensitive “ON-OFF” Fluorescence Immunoassay Based on Silicon-Assisted Surface Enhanced Fluorescence. Rsc Advances, 11, 7723-7731.
[Google Scholar] [CrossRef]
|
|
[31]
|
Wang, M., Shang, Z., Yan, X., et al. (2021) Enhance Fluorescence Study of Grating Structure Based on Three Kinds of Optical Disks. Optics Communications, 481, Article ID: 126522. [Google Scholar] [CrossRef]
|
|
[32]
|
Pei, X., Tao, G., Wu, X., et al. (2020) Nanomaterial-Based Multiplex Optical Sensors. Analyst, 145, 4111-4123.
[Google Scholar] [CrossRef]
|
|
[33]
|
Sardesai, N.P., Barron, J.C. and Rusling, J.F. (2011) Carbon Nanotube Microwell Array for Sensitive Electrochemiluminescent Detection of Cancer Biomarker Proteins. Analytical Chemistry, 83, 6698-6703.
[Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xia, F., White, R.J., Zuo, X., et al. (2010) An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. Journal of the American Chemical Society, 132, 14346-14348.
[Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, B., Liu, B., Tang, D., et al. (2012) DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of Proteins. Analytical Chemistry, 84, 5392-5399. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gu, X., Tian, S., Chen, Y., et al. (2021) A SERS-Based Competitive Immunoassay Using Highly Ordered Gold Cavity Arrays as the Substrate for Simultaneous Detection of β-Adrenergic Agonists. Sensors and Actuators B: Chemical, 345, Article ID: 130230. [Google Scholar] [CrossRef]
|