血友病治疗最新进展
Advances in the Treatment of Hemophilia
摘要: 血友病(PWH)治疗的创新始于19世纪50年代对血浆分离的描述,人们在冰冻血浆的冷沉淀物中发现首个浓缩物因子VIII (FVIII),使得替代疗法初步进入临床。但是,缺乏病毒病原体筛查导致了血友病患者接受被甲型/丙型肝炎病毒或人类免疫缺陷病毒污染的浓缩物。后期,病毒筛选方法和适当的病毒灭活技术被开发,使浓缩物变得安全。外源性浓缩物的免疫原性问题尚未完全解决,大约25%~35%的PWH产生针对FVIII的同种抗体是替代疗法最严重的不良反应。血友病治疗领域的重大进展是FVIII基因被克隆,为通过重组DNA技术获得重组人凝血因子VIII (r FVIII)奠定了基础。r FVIII在血友病A患者的血浆中具有相对较短的半衰期,约为12~14小时,将r FVIII和IgG/白蛋白的Fc段或者聚乙二醇结合,可延长r FVIII血浆半衰期和延长注射间隔,从而使得r FVIII的半衰期增加。遗憾的是,血友病A的基因治疗结果并不显著,其持久性仍需证明。本文对目前血友病治疗及药物的相关进展进行综述。
Abstract: Progress in hemophilia therapy has been innovative with the description the fractionation of plasma in 1950s. The first concentrates were purified followed the discovery of FVIII in the cryoprecipitate of frozen plasma, which led to replacement therapy in the clinical treatment. Unfortunately, the lack of screening for viral pathogens resulted in hemophilia (PWH) patients receiving concentrates contaminated by hepatitis A virus, hepatitis C virus, and human immunodeficiency virus. Later, viral screening and proper virucidal techniques were developed that made concentrates safe. However, the development of all oantibodies against FVIII in about 25%~35% of PWH is the most serious adverse effect of replacement therapy which has not yet resolved completely. The next major advance was the cloning of the F8 gene, which paved the way to produce concentrates of factors obtained by the recombinant DNA technology. The FVIII had a relatively short half-life in the plasma in hemophilia A patients, approximately 12~14 hours. The ability to prolong the plasma half-life and extend the interval of injections was obtained according to conjugate the factor molecule with the fragment crystallizable of IgG1 or albumin or by adding polyethylene glycol, which has led to an increase in the half-life of concentrates. Unfortunately, the results with gene therapy for hemophilia A have not been as remarkable and the durability must still be demonstrated. This article reviews the current progress in the treatment of hemophilia.
文章引用:马传荣. 血友病治疗最新进展[J]. 临床医学进展, 2021, 11(9): 4099-4104. https://doi.org/10.12677/ACM.2021.119598

1. 引言

血友病A (HA)是由于FVIII部分或全部缺乏所致的X连锁遗传性出血性疾病,由FVIII基因突变引起。健康人群中FVIII浓度的范围相当广泛,为64%~197%,而且还取决于血型,O型血为55%~150%,非O型血为71~186 IU/dL [1]。PWH中的自发性出血最常见于关节和肌肉。在重型(FVIII:C < 1%) HA患者,即使没有任何明显的外伤,关节积血、肌肉血肿、中枢神经系统出血和血尿也很常见;在中度重型(1%~2%)血友病患者,中度创伤或者小手术可以诱发出血;在中型(1%~5%)血友病患者,在重度创伤或者大手术后才发生出血。肌肉和骨骼紊乱可能很快导致日常活动活动受限,从而降低患者的生活质量。

2. 替代疗法

在50年代及以前,全血或新鲜血浆是HA唯一的治疗方法。但这些血液制品中没有足够的FVIII蛋白来阻止严重出血。因此,大多数重型血友病患者死于童年或成年初期,手术或外伤后出血以及重要器官(尤其是大脑)出血是最常见死亡原因 [2]。60年代,人们发现血浆冷沉淀的馏分中含有大量FVIII,首次可以以相对较小的量注入足够的FVIII以控制严重的出血,使大手术变得可行 [3]。在70年代,随着血浆源性因子VIII (PdFVIII)的分离和纯化技术的不断发展,冻干血浆凝血因子浓缩物的可及性增加,可早期控制血友病A患者的出血以及降低未治疗或治疗不佳患者典型的肌肉关节损伤,代表着血友病A现代管理的真正开始。随后一级预防的提出和采用,达到了预防大多数出血事件并进一步减少关节病的目标 [4]。80年代,因PdFVIII污染,60%以上的重型血友病A患者感染人类免疫缺陷病毒和丙型肝炎病毒,因收集捐献者血浆制成的FVIII浓缩物而传播。虽然对捐助者进行筛查和病毒灭活可以提高PdFVIII感染的安全性,但人们仍然会担心可能通过血液或其衍生物传播新的或未知的病原体。随着DNA技术的进步,80年代初FVIII基因被克隆,rFVIII产品是通过将rFVIII DNA质粒异源转染到非人类哺乳动物细胞系中获得,从本质上消除了血源性病原体的传播,并使得工业化生产rFVIII成为可能。

3. 血友病替代治疗的目标

血友病治疗的主要目的是预防危及生命的出血和/或治疗肌肉和关节出血。早期,治疗仅限于按需治疗,即在出血发生后输注浓缩物,也使家庭治疗成为迅速而成功的治疗。尽管按需治疗可以止血,但关节或肌肉的损伤会在出血开始几小时后开始。研究表明,与按需治疗相比,在出血发生后开始预防,即所谓的二级预防,仍具有优势 [5]。在中型(FVIII:C 1%~5%)或轻型(FVIII:C 5%~40%)血友病患者中,出血不常见或不存在,表明将FVIII血浆浓度维持在1%以上可能会预防出血。有研究表明,至少达到12%甚至20%的基线FVIII水平才能完全防止关节出血风险 [6] [7]。不幸的是,即使是一次关节出血也可能引发血友病关节病。反复出血会导致进行性慢性滑膜炎、软骨和骨骼破坏,最终导致伴有肌肉萎缩的致残性关节病。降解红细胞的铁将导致滑膜增生和炎症介质的释放,包括白细胞介素(IL)~1、IL~6和肿瘤坏死因子(TNF)~α都会导致软骨破坏 [8]。血管内皮生长因子(VEGF)的增加会触发滑膜血管的新血管生成 [9]。即使在两次或多次关节出血后但在关节疾病发作之前开始预防(二级预防)也能降低出血频率,并有利于避免因先前出血而受损的关节和肌肉的进一步恶化。

4. 延长半衰期(EHL)重组FVIII浓缩物(rFVIII)

限制预防治疗获益的是频繁重复静脉药物注射,FVIII隔2~3天1次。制药业开发了一些生化方法来提高浓缩物的半衰期,以减轻患者尤其是年轻患者的治疗负担。将FVIII与IgG1或白蛋白的可结晶片段(Fc) [10] 结合或添加聚乙二醇(PEG) [11] 可延长血浆半衰期和延长注射间隔,导致浓缩物的半衰期延长。大多数r FVIII EHL是原来标准半衰期rFVIII的基础上结合不同分子量和大小的Fc或PEG的新型r FVIII。多年来,聚乙二醇化已被用于提高多种药物的疗效。最近,几种聚乙二醇化的rFVIII,主要是B区缺失rFVIII,已被批准。不幸的是,与之前的标准半衰期r FVIII相比,半衰期仅改善2~3小时。半衰期的适度增加允许将预防给药的频率降低至每周2次或每5天一次。

Efmoroctocog alfa (Elocta)是B区缺失的r FVIII,共价连接到人IgG1的Fc段。许多人类细胞表达的Fc受体能够通过胞饮作用将FVIII结合并吸收到细胞质中,然后将其完整地送回血浆室。这种回收机制可以将Efmoroctocog alfa半衰期增加约4~5小时。通过添加VWF的D'D3二聚体片段和称为XTEN的多肽链,已经实现了对Efmoroctocog alfa分子融合过程的其他修饰。这种新型分子被命名为BIVV001 [12]。D'D3结构域稳定FVIII,使在血友病小鼠 [13] 或血友病患中者 [14] 的半衰期显着增加,最多37小时,大约是Efmoroctocog Alfa的两倍,并导致在输注25 IU后120小时的血浆谷浓度为5%。一项为XTEND~1的BIVV001 (NCT04161495)非随机临床试验目前正在进行中,以评估26周内两种不同的给药方案,50 IU/kg每周一次预防及按需治疗的疗效和安全性。

5. 非替代疗法

尽管凝血因子的可及性取得了进展,但对于PWH的最佳治疗仍有未满足的需求。值得注意的是,目前可用的EHL FVIII产品降低了给药频率,但仍然存在静脉通路的挑战,尤其是在幼儿中。替代疗法最严重的副作用,即外源性浓缩物的免疫原性问题也尚未解决。在重度HA患者中,FVIII的同种抗体的发生率分别约20%~30% [15]。存在抑制剂的个体不适合进行预防,只能通过每天应用旁路制剂进行治疗以防止出血,例如活化凝血酶原复合物浓缩物(APCC)和活化重组FVII (rFVIIa),它们非常昂贵 [16],使得治疗负担增加。

5.1. 舒友立乐® (艾美赛珠单抗)

基于天然促凝和抗凝因子之间的平衡,目前通过增强凝血作用来重新平衡凝血系统(emicizumab)或抑制抗凝途径(例如fitusiran、concizumab)进而研发新的平衡PWH止血系统的药物。Emicizumab是一种新型FIXa和FX特异性人源化抗体,由复杂的生物分子过程产生。FIXa和FX的特异性单克隆抗体由仓鼠卵巢细胞(CHO)或人胚胎肾(HEK~293)细胞产生,然后转染带有携带IgG重链和轻链基因的质粒 [17]。Emicizumab充当FVIIIa辅因子模拟物,该分子结合FIXa和FX并在Tenase复合物中呈现三维结构。弱亲和力可以保证下游反应中凝血的激活和FX活化的平衡 [18]。Emicizumab与活化的FVIII既有相似之处,也有不同之处。皮下给与Emicizumab初始负荷剂量3.0 mg/kg,4周后每周1.5 mg/kg可以完全防止出血。Emicizumab的PK曲线呈线性,半衰期为4~5周 [19]。

5.2. 抗凝血途径抑制剂

5.2.1. Fitusiran

Fitusiran是一种抗凝血酶RNA干扰分子(ALN~AT3),可降低肝脏中抗凝血酶(AT)信使RNA的表达 [20] [21]。AT是一种天然抗凝剂,可灭活FXa和凝血酶。AT缺乏可以导致凝血酶过多,从而导致血栓前状态。Fitusiran降低AT的血浆浓度,并提高凝血酶生成,减少了出血倾向,增加HA小鼠的存活率 [22]。Fitusiran在动物模型中降低显著延长的AT水平,以及剂量依赖性和持久性的凝血酶改善。最近,由于在HA患者中发生窦静脉血栓形成,Fitusiran试验已被暂时中止 [23]。在评估了临床风险和安全性,并改变了Fitusiran的给药方案后,这些试验中的给药已恢复 [24]。

5.2.2. Concizumab

Concizumab是一种人源化IgG4单克隆抗体,对组织因子通路抑制剂(TFPI)的第2个Kunitz结构域具有选择性。TFPI是组织因子途径的主要调节剂,因TFPI对丝氨酸蛋白酶的高亲和力而抑制FXa和TF~FVIIa结合的起始阶段。这种化学结合会使TFPI失活并降低该天然抗凝剂的功能。Concizumab通过减轻TFPI对凝血系统的影响来恢复凝血酶活性,其效果是通过降低TFPI水平进而降低凝血酶来实现 [25]。抗-TFPI的I期临床试验中,可观察到剂量依赖性出血倾向降低 [26]。单次输注后,Concizumab的生物利用度为93%,半衰期为72 h [27]。在血友病患者皮下注射不同剂量的Concizumab (0.25、0.5或0.8 mg/kg,每4天)的安全性、PK和药效学的I期临床试验中,未观察到任何安全事件,相对于TFPI血药浓度和凝血酶生成水平,各Concizumab剂量下的药代学(PK)和药效学(PD)结果证实了之前的数据,Concizumab 100 ng/mL可降低出血率 [28]。II期研究中的PK结果 [29] 与健康志愿者相似 [30]。Concizumab用于血友病A治疗的估计ABR为7.0 (95% CI, 4.6; 10.7) [29]。

6. 基因疗法

基因治疗提供了消除重复给药的可能性,提高生活质量。血友病治疗的最终目标应该是“功能性治愈” [31]。基因治疗研究探索了转染基因的各种机制,包括非病毒技术如化学、电穿孔和基于高分子聚合物的程序等。然而,最常见的是病毒介导的(如慢病毒、腺相关或基因编辑)受体细胞表达FVIII蛋白所需信息的转染,以潜在地治愈血友病患者。最近,尽管利用慢病毒基因转染联合自体干细胞移植治疗HA患者(NCT04418414、NCT03818763和NCT03217032)的3项临床试验正在进行中,但最近的努力多集中在r~腺相关病毒(rAAV)作为首选的转染方法。任何基因治疗的关键都必须关注安全性、有效性、可预测性、持久性,并最终为患者提供有意义的影响。有研究者 [32] 对基因治疗相关的出血事件的频率、达到的FVIII水平、转基因表达的持续时间、慢性疼痛的缓解、医疗资源的利用以及心理健康等核心结局指标进行了描述。迄今为止,已完成和正在进行的HA基因治疗临床试验的数据表明 [33],在减少出血频率和需要补充输注FVIII浓缩物以治疗突破性出血事件方面是有益的。然而缺乏其他获益的数据。在安全性方面,肝酶升高的长期影响以及插入突变的风险仍然存在。

7. 结论

随着科技的进步,血友病患者的预期寿命和生活质量显着改善。血液制品的筛查结合病毒灭活技术消除了污染病原体,使PdFVIII更安全。FVIII基因克隆为使用重组DNA技术开发r FVIII铺平了道路。标准半衰期FVIII已通过创新技术得到延长。替代疗法的目标是预防出血和关节病的发展,但由于患者之间的差异较大,因此社区仍然希望获得个体化治疗。尽管取得了这些进展,但出血和对治疗方案的依从性仍然是许多患者的问题。双特异性单克隆抗体的引入开启了预防出血治疗的新时代,皮下给药途径和长效持续时间使得PWH患者获益更多。其他非替代疗法也在开发中,但这些新型药物的血栓风险仍然需要仔细评估。PWH目前正在进行多项基因治疗试验,但长期安全性和有效性仍有待确定。

8. 中国现状

中国血友病的治疗从极度缺乏到大多使用血浆源性凝血因子或者依赖进口的重组人凝血因子VIII。中国首个B区缺失的重组人凝血因子VIII(安佳音)于2021年7月获批后,因生产技术改进后产量的巨大提升,可提高中国甚至全球血友病A患者对于凝血因子的可及性,有望改善国内血友病A患者的治疗现状。

参考文献

[1] Jang, J.H., Seo, J.Y., Bang, S.H., et al. (2010) Establishment of Reference Intervals for von Willebrand Factor Antigen and Eight Coagulation Factors in a Korean Population Following the Clinical and Laboratory Standards Institute Guidelines. Blood Coagulation & Fibrinolysis, 21, 251-255.
https://doi.org/10.1097/MBC.0b013e3283367931
[2] Belvini, D., Salviato, R., Radossi, P., et al. (2005) Molecular Genotyping of the Italian Cohort of Patients with Hemophilia B. Haematologica, 90, 635-642.
[3] Lane, S. (1840) Haemorrhagic Diathesis. Successful Transfusion of Blood. The Lancet, 35, 185-188.
https://doi.org/10.1016/S0140-6736(00)40031-0
[4] Ingram, G.I. (1997) The History of Haemophilia. Haemophilia, 3, 5-15.
https://doi.org/10.1111/j.1365-2516.1997.tb00168.x
[5] Ljung, R., Kenet, G., Mancuso, M.E., et al. (2016) BAY 81-8973 Safety and Efficacy for Prophylaxis and Treatment of Bleeds in Previously Treated Children with Severe Haemophilia A: Results of the LEOPOLD Kids Trial. Haemophilia, 22, 354-360.
https://doi.org/10.1111/hae.12866
[6] Santagostino, E., Negrier, C., Klamroth, R., et al. (2012) Safety and Pharmacokinetics of a Novel Recombinant Fusion Protein Linking Coagulation Factor IX with Albumin (rIX-FP) in Hemophilia B Patients. Blood, 120, 2405-2411.
https://doi.org/10.1182/blood-2012-05-429688
[7] Negrier, C., Knobe, K., Tiede, A., et al. (2011) Enhanced Pharmacokinetic Properties of a Glyco-PEGylated Recombinant Factor IX: A First Human Dose Trial in Patients with Hemophilia B. Blood, 118, 2695-2701.
https://doi.org/10.1182/blood-2011-02-335596
[8] Soucie, J.M., Monahan, P.E., Kulkarni, R., et al. (2018) The Frequency of Joint Hemorrhages and Procedures in Nonsevere Hemophilia A vs B. Blood Advances, 2, 2136-2144.
https://doi.org/10.1182/bloodadvances.2018020552
[9] Valentino, L.A., Hakobyan, N. and Enockson, C. (2008) Blood-Induced Joint Disease: The Confluence of Dysregulated Oncogenes, Inflammatory Signals, and Angiogenic Cues. Seminars in Hematology, 45, S50-S57.
https://doi.org/10.1053/j.seminhematol.2008.03.017
[10] Peters, R.T., Toby, G., Lu, Q., et al. (2013) Biochemical and Functional Characterization of a Recombinant Monomeric Factor VIII-Fc Fusion Protein. Journal of Thrombosis and Haemostasis, 11, 132-141.
https://doi.org/10.1111/jth.12076
[11] Wynn, T.T., Gumuscu, B., et al. (2016) Potential Role of a New PEGylated Recombinant Factor VIII for Hemophilia A. Journal of Blood Medicine, 7, 121-128.
https://doi.org/10.2147/JBM.S82457
[12] Zetterberg, E., Palmblad, J., Wallensten, R., et al. (2014) Angiogenesis Is Increased in Advanced Haemophilic Joint Disease and Characterised by Normal Pericyte Coverage. European Journal of Haematology, 92, 256-262.
https://doi.org/10.1111/ejh.12227
[13] Chhabra, E.S., Liu, T.Y., Kulman, J., et al. (2020) BIVV001, a New Class of Factor VIII Replacement for Hemophilia A That Is Independent of von Willebrand Factor in Primates and Mice. Blood, 135, 1484-1496.
https://doi.org/10.1182/blood.2019001292
[14] Konkle, B.A., Shapiro, A.D., Quon, D.V., et al. (2020) BIVV001 Fusion Protein as Factor VIII Replacement Therapy for Hemophilia A. The New England Journal of Medicine, 383, 1018-1027.
https://doi.org/10.1056/NEJMoa2002699
[15] Yee, A., Gildersleeve, R.D., Gu, S., et al. (2014) A von Willebrand Factor Fragment Containing the D’D3 Domains Is Sufficient to Stabilize Coagulation Factor VIII in Mice. Blood, 124, 445-452.
https://doi.org/10.1182/blood-2013-11-540534
[16] Gringeri, A., Mantovani, L.G., Scalone, L. and Mannucci, P.M. (2003) Cost of Care and Quality of Life for Patients with Hemophilia Complicated by Inhibitors: The COCIS Study. Blood, 102, 2358-2363.
https://doi.org/10.1182/blood-2003-03-0941
[17] Kitazawa, T., Igawa, T., Sampei, Z., et al. (2012) A Bis-Pecific Antibody to Factors IXa and X Restores Factor VIII Hemostatic Activity in a Hemophilia A Model. Nature Medicine, 18, 1570-1574.
https://doi.org/10.1038/nm.2942
[18] Lenting, P.J., Denis, C.V. and Christophe, O.D. (2017) Emicizumab, a Bispecific Antibody Recognizing Coagulation Factors IX and X: How Does It Compare to Factor VIII? Blood, 130, 2463-2468.
https://doi.org/10.1182/blood-2017-08-801662
[19] Uchida, N., Sambe, T., Yoneyama, K., et al. (2016) A First-in-Human Phase 1 Study of ACE910, a Novel Factor VIII- Mimetic Bispecific Antibody, in Healthy Subjects. Blood, 127, 1633-1641.
https://doi.org/10.1182/blood-2015-06-650226
[20] Ragni, M.V. (2015) Targeting Antithrombin to Treat Hemophilia. The New England Journal of Medicine, 373, 389-391.
https://doi.org/10.1056/NEJMcibr1505657
[21] Muczynski, V., Christophe, O.D., Denis, C.V. and Lenting, P.J. (2017) Emerging Therapeutic Strategies in the Treatment of Hemophilia A. Seminars in Thrombosis and Hemostasis, 43, 581-590.
https://doi.org/10.1055/s-0037-1604053
[22] Bolliger, D., Szlam, F., Suzuki, N., et al. (2010) Heterozygous Antithrombin Deficiency Improves in Vivo Hemostasis in Factor VIII-Deficient Mice. Thrombosis and Haemostasis, 103, 1233-1238.
https://doi.org/10.1160/TH09-10-0732
[23] Figueiredo, M. (2020, March 18) Novo Nordisk Pauses 3 Clinical Trials of Concizumab amid Safety Concerns. Hemophilia News Today.
https://hemophilianewstoday.com/2020/08/14/novo-nordisk-resumes-phase-3-trials-of-concizumab-in-hemophilia-a-and-b
[24] Ray, F. (2020, August 14) Novo Nordisk Resumes Phase 3 Trials of Concizumab in Hemophilia A and B. Hemophilia News Today.
https://hemophilianewstoday.com/2020/08/14/novo-nordisk-resumes-phase-3-trials-of-concizumab-in-hemophilia-a-and-b
[25] Broze, G.J., Warren, L.A., Novotny, W.F., et al. (1988) The Lipoprotein-Associated Coagulation Inhibitor That Inhibits the Factor VII-Tissue Factor Complex Also Inhibits Factor Xa: Insight into Its Possible Mechanism of Action. Blood, 71, 335-343.
https://doi.org/10.1182/blood.V71.2.335.335
[26] Pasi, K.J., Rangarajan, S., Georgiev, P., et al. (2017) Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy. The New England Journal of Medicine, 377, 819-828.
https://doi.org/10.1056/NEJMoa1616569
[27] Agersø, H., Overgaard, R.V., Petersen, M.B., et al. (2014) Pharmacokinetics of an Anti-TFPI Monoclonal Antibody (Concizumab) Blocking the TFPI Interaction with the Active Site of FXa in Cynomolgus Monkeys after IV and SC Administration. European Journal of Pharmaceutical Sciences, 56, 65-69.
https://doi.org/10.1016/j.ejps.2014.02.009
[28] Eichler, H., Angchaisuksiri, P., Kavakli, K., et al. (2018) A Randomized Trial of Safety, Pharmacokinetics and Pharmacodynamics of Concizumab in People with Hemophilia A. Journal of Thrombosis and Haemostasis, 16, 2184-2195.
https://doi.org/10.1111/jth.14272
[29] Shapiro, A.D., Angchaisuksiri, P., Astermark, J., et al. (2019) Subcutaneous Concizumab Prophylaxis in Hemophilia A and Hemophilia A/B with Inhibitors: Phase 2 Trial Results. Journals Blood, 134, 1973-1982.
https://doi.org/10.1182/blood.2019001542
[30] Chowdary, P., Lethagen, S., Friedrich, U., et al. (2015) Safety and Pharmacokinetics of Anti-TFPI Antibody (Concizumab) in Healthy Volunteers and Patients with Hemophilia: A Randomized First Human Dose Trial. Journal of Thrombosis and Haemostasis, 13, 743-754.
https://doi.org/10.1111/jth.12864
[31] Skinner, M.W., Nugent, D., Wilton, P., et al. (2020) Achieving the Unimaginable: Health Equity in Haemophilia. Haemophilia, 26, 17-24.
https://doi.org/10.1111/hae.13862
[32] Iorio, A., Skinner, M.W., Clearfield, E., et al. (2018) Core Outcome Set for Gene Therapy in Haemophilia: Results of the coreHEM Multistakeholder Project. Haemophilia, 24, e167-e172.
https://doi.org/10.1111/hae.13504
[33] Sidonio, R.F., Pipe, S.W., Callaghan, M.U., et al. (2020) Discussing Investigational AAV Gene Therapy with Hemophilia Patients: A Guide. Blood Reviews, 2020, Article ID: 100759.
https://doi.org/10.1016/j.blre.2020.100759