|
[1]
|
Vaduganathan, M. and Januzzi Jr., J.L. (2019) Preventing and Treating Heart Failure with Sodium-Glucose Co- Transporter 2 Inhibitars. American Journal of Cardiology, 124, S20-S27. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
McMurray, J.J., Solomon, S.D., Inzucchi, S.E., Kober, L., Kosiborod, M.N., Martinez, F.A., et al., for the DAPA-HF Trial Committees and Investigators (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. [Google Scholar] [CrossRef]
|
|
[3]
|
Packer, M., Anker, S.D., Butler, J., Filippatos, G. and Zannad, F. (2017) Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients with Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiology, 2, 1025-1029. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Iborra-Egea, O., Santiago-Vacas, E., Yurista, S.R., Lupon, J., Packer, M., Heymans, S., Zannad, F., et al. (2019) Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure with Reduced Ejection Fraction with or without Diabetes. JACC: Basic to Translational Science, 4, 831-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yurista, S.R, Sillje, H.H., Oberdorf-Maass, S.U., Schouten, E.M., Pavez Giani, M.G., Hillebrands, J.L., et al. (2019) Sodium-Glucose Co-Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non-Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. European Journal of Heart Failure, 21, 862-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Paolisso, G., De Riu, S., Marrazzo, G., Verza, M., Varricchio, M. and D’Onofrio, F. (1991) Insulin Resistance and Hyperinsulinemia in Patients with Chronic Congestive Heart Failure. Metabolism, 40, 972-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC: Basic to Translational Science, 3, 575-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mudaliar, S., Alloju, S. and Henry, R.R. (2016) Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG Outcome Study a Unifying Hypothesis. Diabetes Care, 39, 1115-1122.
|
|
[12]
|
Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., Zuo, F., Quan, A., Farkouh, M.E., Fitchett, D.H., Goodman, S.G., Goldenberg, R.M., Al-Omran, M., Gilbert, R.E., Bhatt, D.L., Leiter, L.A., Jüni, P., Zinman, B. and Connelly, K.A. (2019) EMPA-HEART CardioLink-6 Investigators. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702. [Google Scholar] [CrossRef]
|
|
[13]
|
Brown, A., Gandy, S., McCrimmon, R., Struthers, A. and Lang, C.C. (2019) A Randomised Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in Patients with Type Two Diabetes. The DAPA-LVH Trial. Circulation, 140, A10643.
|
|
[14]
|
Pabel, S., Wagner, S., Bollenberg, H., Bengel, P., Kovacs, A., Schach, C., et al. (2018) Empagliflozin Directly Improves Diastolic Function in Human Heart Failure. European Journal of Heart Failure, 20, 1690-1700. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Packer, M. (2018) Do Sodium-Glucose Co-Transporter-2 Inhibitors Prevent Heart Failure with a Preserved Ejection Fraction by Counterbalancing the Effects of Leptin? A Novel Hypothesis. Diabetes, Obesity and Metabolism, 20, 1361-1366. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shigiyama, F., Kumashiro, N., Miyagi, M., Ikehara, K., Kanda, E., Uchino, H. and Hirose, T. (2017) Effectiveness of Dapagliflozin on Vascular Endothelial Function and Glycemic Control in Patients with Early-Stage Type 2 Diabetes Mellitus: DEFENCE Study. Cardiovascular Diabetology, 16, Article No. 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al., for the EMPA-REG OUTCOME Investigators (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. [Google Scholar] [CrossRef]
|
|
[18]
|
Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al., for the DECLARE-TIMI 58 Investigators (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. [Google Scholar] [CrossRef]
|
|
[19]
|
Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al., for the CANVAS Program Collaborative Group (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. [Google Scholar] [CrossRef]
|
|
[20]
|
Chilton, R., Tikkanen, I., Cannon, C.P., Crowe, S., Woerle, H.J., Broedl, U.C. and Johansen, O.E. (2015) Effects of Empagliflozin on Blood Pressure and Markers of Arterial Stiffness and Vascular Resistance in Patients with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 17, 1180-1193. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Herat, L.Y., Magno, A.L., Rudnicka, C., Hricova, J., Carnagarin, R., Ward, N.C., et al. (2020) SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC: Basic to Translational Science, 5, 169-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Avogaro, A., Fadini, G.P. and Del Prato, S. (2020) Reinterpreting Cardiorenal Protection of Renal Sodium-Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming. Diabetes Care, 43, 501-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Johnsson, K.M., Ptaszynska, A., Schmitz, B., Sugg, J., Parikh, S.J. and List, J.F. (2013) Vulvovaginitis and Balanitis in Patients with Diabetes Treated with Dapagliflozin. Journal of Diabetes and its Complications, 27, 479-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
李颖. 血管紧张素受体-脑啡肽酶双重抑制通过调控TGF-β/Smad信号通路对心肾综合征的作用及机制研究[D]: [博士学位论文]. 天津: 天津医科大学, 2019.
|
|
[25]
|
Chen, C.H. (2016) Critical Questions about PARADIGM-HF and the Future. Acta Cardiologica Sinica, 32, 387-396.
|
|
[26]
|
Bhagat, A.A., Greene, S.J., Vaduganathan, M., Fonarow, G.C. and Butler, J. (2019) Initiation, Continuation, Switching, and Withdrawal of Heart Failure Medical Therapies During Hospitalization. JACC: Heart Failure, 7, 1-12. [Google Scholar] [CrossRef] [PubMed]
|