微小RNA在妊娠期糖尿病中的研究进展
The Research Progress of miRNA in Gestational Diabetes
DOI: 10.12677/ACM.2021.119635, PDF, HTML, XML, 下载: 331  浏览: 502 
作者: 张彬彬, 杨琪媛:大连医科大学,辽宁 大连;瓮占平*:青岛市市立医院,山东 青岛
关键词: 微小RNA妊娠期糖尿病分子生物标志物MicroRNA Gestational Diabetes Mellitus Molecular Biomarkers
摘要: 微小RNA是一类高度保守的内源性单链RNA序列,在各种细胞类型中均可表达。妊娠期糖尿病是妊娠期间首次诊断的糖耐量异常。该病由多因素导致,且其发病机制尚不明确,可引起多种并发症,对母婴均可造成巨大危害。妊娠期糖尿病患者血液中的某些miRNA与正常孕妇相比存在差异表达,有作为早期诊断的分子生物标志物的潜力,不同miRNA可通过不同的方式参与妊娠期糖尿病的发生、发展。此综述主要讨论miRNA在GDM中的作用机制、早期诊断及治疗方面的研究进展。
Abstract: MicroRNA is a highly conserved endogenous single-stranded RNA sequence, which can be expressed in various cell types. Gestational diabetes mellitusis the first diagnosis of impaired glucose tolerance during pregnancy. It is caused by multiple factors, and its pathogenesis is not clear. It can cause a variety of complications and cause great harm to mothers and babies. Some miRNAs in the blood of patients with gestational diabetes are differentially expressed compared with normal pregnant women, and they have the potential as molecular biomarkers for early diagnosis. Different miRNAs can participate in the occurrence and development of gestational diabetes in different ways. This review mainly discusses the research progress of miRNA in GDMonthemechanism, early diagnosis and treatment.
文章引用:张彬彬, 杨琪媛, 瓮占平. 微小RNA在妊娠期糖尿病中的研究进展[J]. 临床医学进展, 2021, 11(9): 4338-4344. https://doi.org/10.12677/ACM.2021.119635

1. 引言

微小RNA(microRNA, miRNA)是一类短的非编码RNA,通过碱基互补配对与靶mRNA结合,继而诱导mRNA降解或抑制其翻译,是基因表达的关键调节因子 [1] 。许多人类疾病(包括癌症和免疫性疾病)都与miRNA表达失调有关 [2] ,因此,miRNA被认为是重要的新的治疗靶点。

妊娠期糖尿病(gestational diabetes mellitus, GDM)是指妊娠期首次发现的不同程度的糖代谢异常 [3] ,近年来由于发病率呈上升趋势而备受关注。GDM是常见的妊娠期并发症之一,发病机制尚未完全明确,致病因素主要包括:环境因素、遗传致敏基因因素、表观遗传因素、年龄因素等多种因素 [4] ,不仅增加了孕妇子痫前期、剖宫产、2型糖尿病的发生率,还增加了早产、难产、巨大儿、胎儿宫内窘迫,婴儿远期肥胖、糖尿病和高血压等风险,导致多种不良妊娠结局,严重威胁孕妇和胎儿安全 [5] [6] 。因此早期诊断及治疗GDM对降低妊娠不良结局有重要意义 [7] 。

miRNA的可及性、高特异性和敏感性,使其符合成为理想生物标志物的大多数要求 [8] ,并且作为GDM的潜在生物标志物,可为发现新的GDM早期诊断方法做出贡献 [9] 。下面就miRNA的生物学特性及其在GDM中的作用机制和研究进展进行综述。

2. miRNA的生物学特性

miRNA是短小的内源性非编码单链RNA,长度约19~24个核苷酸,调节基因转录后的表达,参与细胞生长、分化和凋亡等主要生物学过程 [10] 。miRNA生物过程的经典途径始于细胞核中miRNA的基因转录,初始转录产物(pri-miRNA)由核糖核酸酶(RNase) Drosha加工后形成前体miRNA (pre-miRNA),随后通过输出蛋白5/Ras相关核蛋白GTP (XPO5/RanGTP)复合物由胞核转移到胞质中 [11] 。经过同为核糖核酸酶的Dicer切割去除末端环,生成双链miRNA。双链中的一条成熟的miRNA链,被加载到Argonaute (AGO)蛋白上,形成miRNA诱导的沉默复合体(MIRISC) [12] ,MIRISC利用成熟的miRNA在其靶mRNA的3' UTR或5' UTR处结合特定序列,从而诱导翻译抑制或基因沉默 [13] [14] 。

3. miRNA的家族

通常,同一miRNA家族成员具有相似的生理功能,在调节免疫系统、细胞增殖、分化、肿瘤和细胞周期等方面均有关键作用。

miR-29家族是目前癌症和代谢性疾病中研究较多的miRNA之一,也是胰腺和肝脏中表达最丰富的miRNA之一。包含miR-29a、miR-29b和miR-29c,其中miR-29b还包括具有相同成熟序列的miR-29b-1和miR-29b-2 [15] ,miR-29b-2和miR-29c基因位于1号染色体(1q32.2)上,miR-29b-1和miR-29a基因位于7号染色体(7q32.3)上 [16] 。mir-29a在β细胞减少时可促进胰岛素的分泌,在肝脏中,miR-29a和miR-29c都是通过磷脂酰肌醇3-激酶(PI3K)调节胰岛素信号的重要负调节因子 [17] 。此外,miR-29家族还参与了免疫系统 [18] 、造血功能 [19] 和细胞凋亡 [20] 等其他多种过程的调节,无论是在正常生理过程还是疾病发生发展中都发挥重要作用。

人类的miR-221家族由两个成员组成——miR-221和miR-222,它们都位于X染色体上,并且都与代谢性疾病有关。在糖尿病小鼠模型中,脂肪细胞的miR-222表达明显上调,Fan等进一步发现miR-221/222是β细胞增殖和胰岛素产生的重要调节剂,可以调节生理和病理过程中的葡萄糖代谢 [21] 。

miR-223是其家族中的唯一成员,位于X染色体上,序列长度在20-23nt之间。在触发炎症信号通路和在炎性、免疫性疾病的发生过程中有重要的调节作用 [22] 。巨噬细胞中miR-223通过靶定STAT3,激活TLR炎性通路并释放炎症因子IL-6、IL-1β起到促炎的作用 [23] 。2型糖尿病患者血浆中miR-223水平明显低于正常对照组 [24] 。

miR-330位于人类染色体19q13.32上,miR-330-3p/5p分别由miR-330前体的5'端臂和3'端臂加工 [25] 。miR-330-5p/Tim-3轴可调节胰岛素抵抗 [26] 。miR-330-3p在自发分娩的GDM孕妇中的表达较剖宫产孕妇明显升高。此外,miR-330-3p在饮食控制的孕妇中表达较需要胰岛素治疗的孕妇水平更高,其高水平表达与更好的妊娠结局有关 [27] 。

4. miRNA的生物学作用

人类基因组由大量的miRNA基因组成,占所有预测的人类基因的1%~5% [28] ,它几乎存在于研究的所有细胞和组织中,因此其作为分子生物标志物有巨大潜力 [29] 。现在国内外学者们广泛认为miRNA是基因表达表观遗传控制的关键介质,其表达调控在疾病进展中起着重要作用,并且可能成为疾病重要的诊断和预后工具。

通常,研究者们通过基因敲除或过表达实验来揭示miRNAs的生物学功能,至少77%的miRNAs与异常的表型敲除有关。在高脂饮食(HFD)喂养的小鼠中,miR-223基因敲除会加剧胰岛素抵抗 [22] 。miR-208缺失的动物存在应激反应缺陷 [30] 。同样地,miRNAs的过表达也会导致一系列异常,miR-221/222的过表达可减少胰岛素的产生和β细胞的分泌,并导致体内葡萄糖不耐受 [21] 。miRNA-29过表达可减少葡萄糖摄取 [31] 。

5. miRNA在GDM中的作用

5.1. miRNA-29

倪雯等 [32] 研究发现GDM患者miR-29表达明显低于正常孕妇,且miR-29表达与空腹血糖(FGP)、餐后2小时血糖(2hGP)、糖化血红蛋白(HbA1c)呈正相关,与空腹胰岛素(FINS)呈负相关。miRNA-29过表达可降低葡萄糖转运蛋白4 (GLUT4)水平、减弱胰岛素信号传导以及胰岛素受体底物(IRS1)和磷酸肌醇3激酶(PI3K)的表达,是葡萄糖代谢的负调节因子 [33] ,抑制成年小鼠体内的miR-29,可降低空腹血糖并改善胰岛素敏感性 [34] 。提示临床上可通过测定外周血miR-29表达作为早期诊断GDM的方法,在一定程度上抑制miRNA-29的表达,可能是控制妊娠期糖尿病的一个治疗方法。孙大光等 [35] 通过miR-29b过表达、敲低结合回复实验验证了在胎盘绒毛膜滋养层细胞HTR8-/SVneo中,miR-29b通过对其下游靶基因HIF3A的负调控,进而调控细胞的增殖、凋亡、迁移和侵袭等功能。提示miR-29b的低水平表达,使胎盘滋养层细胞的迁移、侵袭能力过高可能是GDM的病因之一。

5.2. miRNA-330-3p

Sebastiani等 [36] 发现miR-330-3p在GDM患者血液中高表达,并且血浆中miR-330-3p表达量与GDM患者的妊娠结局存在一定关联。GDM患者血浆中miR-330-3p表达上调,表达水平更高的一组患者往往表现为更积极的糖尿病表型,而表达水平较低的一组,未来需胰岛素治疗的风险增加。Xiao等 [37] 发现miR-330-3p靶向作用于GCK可导致GDM中INS-1细胞功能异常,提示miR-330-3p可能成为GDM治疗的新靶点。近期有研究进一步证实 [38] ,循环miR-330-3p表达水平升高,饮食和胰岛素治疗可获得更好的效果,而miR-330-3p水平降低,可增加疾病严重程度和外源性胰岛素需求,miR-330-3p低表达还与GDM导致的剖宫产高风险有关。提示miR-330-3p高表达可能有更好的妊娠结局,循环miR-330-3p水平可能有助于指导GDM的个性化治疗和判断预后。

5.3. miRNA-221/222

Zhao等 [39] 在大鼠GDM模型的胎盘组织中,测定出miRNA-221与正常对照组相比表达下调,其水平与GDM大鼠血糖水平呈负相关。通过生物信息学预测及荧光素酶报告基因检测确定了miRNA-221是PAK1的直接靶标,其过表达可刺激INS-1细胞中的胰岛素分泌、促进细胞增殖并抑制细胞凋亡。提示miRNA-221通过靶向作用于PAK1调节胰岛β细胞的增殖,凋亡和胰岛素分泌,并可能通过此机制作为GDM的治疗靶点。此外还有研究显示,miR-221可能通过抑制脂联素信号而促进胰岛素抵抗 [40] ,通过抑制Sirtuin-1 (SIRT1)促进炎症发生并降低胰岛素敏感性 [41] 。在血浆中,GDM患者的miRNA-222表达与对照组相比显著降低 [42] ,而在网膜脂肪组织中,妊娠期糖尿病患者的miRNA-222表达水平与糖耐量正常的孕妇相比有所升高。此外,miRNA-222可能通过抑制雌激素受体α蛋白(ERα)和葡萄糖转运蛋白4(GLUT4)的表达来负调控脂肪胰岛素敏感性 [43] ,提示其可能成为GDM治疗的靶标。

5.4. miRNA-223

Yoffe等 [44] 通过分析GDM患者与正常妊娠孕妇的血浆中miR-223的表达,发现miR-223在GDM孕妇中的表达与正常对照组相比较高。此前有研究表明,GDM患者存在明显的氧化应激失衡 [45] 。作为一种氧化应激相关的miRNA,miR-223可抑制叉头盒O1 (FOXO1)和SRY-box 6 (SOX6)信号传导,是在代谢应激期间维持功能性β细胞质量的关键因素 [46] ,它还可以靶向作用于细胞氧化应激反应的关键通路keap1-Nrf2,从而调节氧化应激和胰岛素抵抗 [47] 。Wang等 [48] 在研究妊娠糖尿病患者胎盘组织中的关键基因及其功能时,发现miR-223-3p和miR-520、TATA结合蛋白(TBP)共同调节了大部分差异表达基因(DEGS),尤其是细胞代谢相关基因-FOXO1和转录抑制因子锌指E盒结合同源盒1 (ZEB1),提示miR-223可能通过影响介导氧化应激的信号传导通路进而参与GDM的发生发展,为GDM的发病机制提供了新的见解。

6. 结论与展望

近年来,随着GDM的患病率逐年增加,对GDM的发病机制、早期诊断及治疗的研究需求也更加迫切。目前多数研究都是针对miRNA在GDM中的差异表达,但研究对象存在种族差异、样本数量限制、孕周不同等问题,这些因素都可能影响研究结果,因此建立稳定的GDM动物模型、寻找可靠、灵敏的生化治标,具有重要意义。总之,随着人们对miRNA在GDM的发生、发展及作用机制方面的进一步研究,未来miRNA无论是作为临床治疗的靶点,还是作为早期诊断的分子生物标志物都具有广阔前景。

参考文献

NOTES

*通讯作者。

参考文献

[1] Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of microRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20.
https://doi.org/10.1038/s41580-018-0059-1
[2] Li, Y. and Kowdley, K.V. (2012) MicroRNAs in Common Human Diseases. Genomics, Proteomics and Bioinformatics, 10, 246-253.
https://doi.org/10.1016/j.gpb.2012.07.005
[3] Committee on Practice Bulletins—Obstetrics (2017) Practice Bulletin No. 180: Gestational Diabetes Mellitus. Obstetrics & Gynecology, 130, e17-e37.
https://doi.org/10.1097/AOG.0000000000002159
[4] Chiefari, E., Arcidiacono, B., Foti, D., et al. (2017) Gestational Diabetes Mellitus: An Updated Overview. Journal of Endocrinological Investigation, 40, 899-909.
https://doi.org/10.1007/s40618-016-0607-5
[5] McIntyre, H.D., Catalano, P., Zhang, C., Desoye, G., Mathiesen, E.R. and Damm, P. (2019) Gestational Diabetes Mellitus. Nature Reviews Disease Primers, 5, 47.
https://doi.org/10.1038/s41572-019-0098-8
[6] 李金英, 马晓娟. 妊娠期糖尿病发生的危险因素分析及对妊娠结局的影响[J]. 解放军医药杂志, 2020, 32(2): 67-70.
[7] 赵明亮. 早期诊断和治疗对妊娠糖尿病患者妊娠结局的影响[J]. 糖尿病新世界, 2019, 22(15): 34-35.
[8] Condrat, C.E., Thompson, D.C., Barbu, M.G., et al. (2020) miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells, 9, 276.
https://doi.org/10.3390/cells9020276
[9] Pillar, N., Yoffe, L., Hod, M. and Shomron, N. (2015) The Possible Involvement of microRNAs in Preeclampsia and Gestational Diabetes Mellitus. Best Practice & Research: Clinical Obstetrics & Gynaecology, 29, 176-182.
https://doi.org/10.1016/j.bpobgyn.2014.04.021
[10] Bhaskaran, M. and Mohan, M. (2014) MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51, 759-774.
https://doi.org/10.1177/0300985813502820
[11] Yi, R., Qin, Y., Macara, I.G., et al. (2003) Exportin-5 Mediates the Nuclear Export of Pre-microRNAs and Short Hairpin RNAs. Genes & Development, 17, 3011-3016.
https://doi.org/10.1101/gad.1158803
[12] O’Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology (Lausanne), 9, 402.
https://doi.org/10.3389/fendo.2018.00402
[13] Ipsaro, J.J. and Joshua-Tor, L. (2015) From Guide to Target: Molecular Insights into Eukaryotic RNA-Interference Machinery. Nature Structural & Molecular Biology, 22, 20-28.
https://doi.org/10.1038/nsmb.2931
[14] Zhang, J., Zhou, W., Liu, Y., Liu, T., Li, C. and Wang, L. (2018) Oncogenic Role of microRNA-532-5p in Human Colorectal Cancer via Targeting of the 5’UTR of RUNX3. Oncology Letters, 15, 7215-7220.
https://doi.org/10.3892/ol.2018.8217
[15] Wang, Y., Zhang, X., Li, H., Yu, J. and Ren, X. (2013) The Role of miRNA-29 Family in Cancer. European Journal of Cell Biology, 92, 123-128.
https://doi.org/10.1016/j.ejcb.2012.11.004
[16] Kriegel, A.J., Liu, Y., Fang, Y., Ding, X. and Liang, M. (2012) The miR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiological Genomics, 44, 237-244.
https://doi.org/10.1152/physiolgenomics.00141.2011
[17] Dooley, J., Garcia-Perez, J.E., Sreenivasan, J., et al. (2016) The microRNA-29 Family Dictates the Balance between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes, 65, 53-61.
https://doi.org/10.2337/db15-0770
[18] Steiner, D.F., Thomas, M.F., Hu, J.K., Yang, Z., Babiarz, J.E., Allen, C.D.C., Ansel, K.M., et al. (2011) MicroRNA-29 Regulates T-Box Transcription Factors and Interferon-γ Production in Helper T Cells. Immunity, 35, 169-181.
https://doi.org/10.1016/j.immuni.2011.07.009
[19] Hu, W., Dooley, J., Chung, S.S., Chandramohan, D., Cimmino, L., Mukherjee, S., Park, C.Y., et al. (2015) miR-29a Maintains Mouse Hematopoietic Stem Cell Self-Renewal by Regulating Dnmt3a. Blood, 125, 2206-2216.
https://doi.org/10.1182/blood-2014-06-585273
[20] Park, S.-Y., Lee, J.H., Ha, M., Nam, J.-W. and Kim, V.N. (2009) miR-29 miRNAs Activate p53 by Targeting p85α and CDC42. Nature Structural & Molecular Biology, 16, 23-29.
https://doi.org/10.1038/nsmb.1533
[21] Fan, L., Shan, A., Su, Y., et al. (2020) MiR-221/222 Inhibit Insulin Production of Pancreatic β-Cells in Mice. Endocrinology, 161, bqz027.
https://doi.org/10.1210/endocr/bqz027
[22] 钟晓武, 青玉凤, 杨其彬, 何泳龙, 赵明才, 谢文光, 周京国. miR-223基因家族的分子进化与靶基因预测[J]. 川北医学院学报, 2016, 31(3): 315-320.
[23] Chen, Q., Wang, H., Liu, Y., et al. (2012) Inducible microRNA-223 Down-Regulation Promotes TLR-Triggered IL-6 and IL-1beta Production in Macrophages by Targeting STAT3. PLoS ONE, 7, e42971.
https://doi.org/10.1371/journal.pone.0042971
[24] Liang, Y.Z., Li, J.J., Xiao, H.B., He, Y., Zhang, L. and Yan, Y.X. (2018) Identification of Stress-Related microRNA Biomarkers in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Journal of Diabetes, 12, 633-644.
https://doi.org/10.1111/1753-0407.12643
[25] Lee, K.H., Chen, Y.L., Yeh, S.D., Hsiao, M., Lin, J.T., Goan, Y.G. and Lu, P.J. (2009) MicroRNA-330 Acts as Tumor Suppressor and Induces Apoptosis of Prostate Cancer Cells through E2F1-Mediated Suppression of Akt Phosphorylation. Oncogene, 28, 3360-3370.
https://doi.org/10.1038/onc.2009.192
[26] Sun, J., Huang, Q., Li, S., Meng, F., Li, X. and Gong, X. (2018) miR-330-5p/Tim-3 Axis Regulates Macrophage M2 Polarization and Insulin Resistance in Diabetes Mice. Molecular Immunology, 95, 107-113.
https://doi.org/10.1016/j.molimm.2018.02.006
[27] Pfeiffer, S., Sánchez-Lechuga, B., Donovan, P., Halang, L., Prehn, J.H.M., Campos-Caro, A., Byrne, M.M. and López- Tinoco, C. (2020) Circulating miR-330-3p in Late Pregnancy Is Associated with Pregnancy Outcomes among Lean Women with GDM. Scientific Reports, 10, Article No. 908.
https://doi.org/10.1038/s41598-020-57838-6
[28] Bentwich, I., Avniel, A., Karov, Y., et al. (2005) Identification of Hundreds of Conserved and Nonconserved Human microRNAs. Nature Genetics, 37, 766-770.
https://doi.org/10.1038/ng1590
[29] Hanna, J., Hossain, G.S. and Kocerha, J. (2019) The Potential for microRNA Therapeutics and Clinical Research. Frontiers in Genetics, 10, 478.
https://doi.org/10.3389/fgene.2019.00478
[30] Hammond, S.M. (2015) An Overview of microRNAs. Advanced Drug Delivery Reviews, 87, 3-14.
https://doi.org/10.1016/j.addr.2015.05.001
[31] Song, H., Ding, L., Zhang, S. and Wang, W. (2018) MiR-29 Family Members Interact with SPARC to Regulate Glucose Metabolism. Biochemical and Biophysical Research Communications, 497, 667-674.
https://doi.org/10.1016/j.bbrc.2018.02.129
[32] 倪雯, 刘佳, 张弘雎. miR-29、miR-200a在妊娠期糖尿病者外周血中表达及临床意义[J]. 中国计划生育学杂志, 2018, 26(10): 947-950.
[33] Massart, J., Sjögren, R.J.O., Lundell, L.S., et al. (2017) Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle. Diabetes, 66, 1807-1818.
https://doi.org/10.2337/db17-0141
[34] Hung, Y.H., Kanke, M., Kurtz, C.L., et al. (2019) Acute Suppression of Insulin Resistance-Associated Hepatic miR-29 in Vivo Improves Glycemic Control in Adult Mice. Physiological Genomics, 51, 379-389.
https://doi.org/10.1152/physiolgenomics.00037.2019
[35] 孙大光. MiR-29b与妊娠糖尿病的相关性及其分子机制的研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2017.
[36] Sebastiani, G., Guarino, E., Grieco, G.E., Formichi, C., Delli Poggi, C., Ceccarelli, E. and Dotta, F. (2017) Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Frontiers in Endocrinology (Lausanne), 8, 345.
https://doi.org/10.3389/fendo.2017.00345
[37] Xiao, Y., Ding, J., Shi, Y., et al. (2020) MiR-330-3p Contributes to INS-1 Cell Dysfunction Bytargeting Glucokinase in Gestational Diabetes Mellitus. Journal of Obstetrics and Gynaecology Research, 46, 864-875.
https://doi.org/10.1111/jog.14249
[38] Pfeiffer, S., Sánchez-Lechuga, B., Donovan, P., et al. (2017) Circulating microRNA (miRNA) Expression Profiling in Plasma of Patients with Gestational Diabetes Mellitus Reveals Upregulation of miRNA miR-330-3p. Frontiers in Endocrinology (Lausanne), 8, 345.
[39] Zhao, H. and Tao, S. (2019) MiRNA-221 Protects Islet β Cell Function in Gestational Diabetes Mellitus by Targeting PAK1. Biochemical and Biophysical Research Communications, 520, 218-224.
https://doi.org/10.1016/j.bbrc.2019.09.139
[40] Lustig, Y., Barhod, E., Ashwal-Fluss, R., Gordin, R., Shomron, N., Baruch-Umansky, K., et al. (2014) RNA-Binding Protein PTB and microRNA-221 Coregulate AdipoR1 Translation and Adiponectin Signaling. Diabetes, 63, 433-445.
https://doi.org/10.2337/db13-1032
[41] Peng, J., Zhou, Y., Deng, Z., et al. (2018) miR-221 Negatively Regulates Inflammation and Insulin Sensitivity in White Adipose Tissue by Repression of Sirtuin-1 (SIRT1). Journal of Cellular Biochemistry, 119, 6418-6428.
https://doi.org/10.1002/jcb.26589
[42] Pheiffer, C., Dias, S., Rheeder, P. and Adam, S. (2018) Decreased Expression of Circulating miR-20a-5p in South African Women with Gestational Diabetes Mellitus. Molecular Diagnosis & Therapy, 22, 345-352.
https://doi.org/10.1007/s40291-018-0325-0
[43] Shi, Z., Zhao, C., Guo, X., Ding, H., Cui, Y., Shen, R., et al. (2014) Differential Expression of MicroRNAs in Omental Adipose Tissue from Gestational Diabetes Mellitus Subjects Reveals miR-222 as a Regulator of ERalpha Expression in Estrogen-Induced Insulin Resistance. Endocrinology, 155, 1982-1990.
https://doi.org/10.1210/en.2013-2046
[44] Yoffe, L., Polsky, A., Gilam, A., Raff, C., Mecacci, F., Ognibene, A., Crispi, F., Gratacós, E., Kanety, H., Mazaki-Tovi, S., Shomron, N. and Hod, M. (2019) Early Diagnosis of Gestational Diabetes Mellitus Using Circulating microRNAs. European Journal of Endocrinology, 181, 565-577.
https://doi.org/10.1530/EJE-19-0206
[45] Cristina López-Tinoco, M.R.A.G. (2013) Oxidative Stress and Antioxidant Status in Patients with Late-Onset Gestational Diabetes Mellitus. Acta Diabetologica, 50, 201-208.
https://doi.org/10.1007/s00592-011-0264-2
[46] Li, Y., Deng, S., Peng, J., et al. (2019) MicroRNA-223 Is Essential for Maintaining Functional β-Cell Mass during Diabetes through Inhibiting both FOXO1 and SOX6 Pathways. Journal of Biological Chemistry, 294, 10438-10448.
https://doi.org/10.1074/jbc.RA119.007755
[47] Ding, X., Jian, T., Wu, Y., et al. (2019) Ellagic Acid Ameliorates Oxidative Stress and Insulin Resistance in High Glucose-Treated HepG2 Cells via miR-223/keap1-Nrf2 Pathway. Biomedicine & Pharmacotherapy, 110, 85-94.
https://doi.org/10.1016/j.biopha.2018.11.018
[48] Wang, Y., Yu, H., Liu, F. and Song, X. (2019) Analysis of Key Genes and Their Functions in Placental Tissue of Patients with Gestational Diabetes Mellitus. Reproductive Biology and Endocrinology, 17, 104.
https://doi.org/10.1186/s12958-019-0546-z